网站性能检测评分
注:本网站页面html检测工具扫描网站中存在的基本问题,仅供参考。
分析商业数据工具
大数据领域的12大工具,市面上主要的大数据分析工具都在这了! 行业视频课程
大数据工具让企业能够从数据仓库获得洞察力,从而在数据驱动的业务环境中提供重要的竞争优势。
为了满足旺盛需求,大数据工具在迅速遍地开花。在大数据这一概念和业务战略出现以来的十年间,市面上出现了成千上万执行各种任务和流程的工具,它们都承诺可为你节省时间和资金,发掘业务洞察力从而实现创收。显然,一个不断增长的市场呈现在大数据分析工具的面前。
其中许多工具一开始就像最初的大数据软件框架Hadoop那样是开源项目,但后来商业公司迅速涌现,为开源产品提供新工具或商业支持和开发。
从中进行遴选可能很困难,尤其是许多大数据工具用途单一,而你可以用大数据处理许多不同的任务,所以你的分析工具箱会塞得满满当当。本文我们列出了市面上主要的大数据分析工具市面上主要的大数据分析工具,分三大?类别来介绍。
·主要的大数据工具·
如前所述,大数据工具往往属于单一用途类别,而使用大数据有多种方式。所以我们将按类别细分,然后讨论每个类别的分析工具。
一、大数据工具:数据存储和管理
大数据完全始于数据存储,也就是说始于大数据框架Hadoop。它是Apache基金会运行的一种开源软件框架,用于在大众化计算机集群上分布式存储非常大的数据集。
很显然,由于大数据需要大量的信息,存储至关重要。但除了存储外,还需要某种方式将所有这些数据汇集成某种格式化/治理结构,从而获得洞察力。因此,大数据存储和管理是真正的基础――离开了它,分析平台一无是处。在一些情况下,这些解决方案还包括员工培训。
这个领域的大玩家包括:
1. Cloudera
实际上是增加了一些额外服务的Hadoop,你会需要它,因为大数据不容易搞。Cloudera的服务团队不仅可以帮助你构建大数据集群,还可以帮助培训你的员工,更好地访问数据。
2. MongoDB
MongoDB是最受欢迎的大数据数据库,因为它适用于管理经常变化的数据:非结构化数据,大数据常常是非结构化数据。
3. Talend
作为一家提供广泛解决方案的公司,Talend的产品围绕其集成平台而建,该平台集大数据、云、应用程序、实时数据集成、数据准备和主数据管理于一体。
图1:Talend大数据集成平台包括数据质量和治理功能
二、大数据工具:数据清理
在你真正处理数据以获取洞察力之前,需要清理和转换数据,转换成可远程搜索的内容。大数据集往往是非结构化、无组织的,因此需要某种清理或转换。
当下,数据可能来自任何地方:移动、物联网和社交媒体,数据清理显得更为必要。并非所有这些数据都可以轻松“清理”以获得洞察力,因此优秀的数据清理工具极其重要。实际上,在未来几年,预计经过有效清理的数据会是可接受的大数据系统与真正出色的大数据系统之间的竞争优势。
4. OpenRefine
OpenRefine是一款易于使用的开源工具,通过删除重复项、空白字段及??其他错误来清理凌乱的数据。它是开源的,但有一个相当大的社区可提供帮助。
5. DataCleaner
与OpenRefine一样,DataCleaner可将半结构化数据集转换成数据可视化工具可以读取的干净可读的数据集。该公司还提供数据仓库和数据管理服务。
6. 微软Excel
说真的,Excel有其用途。你可以从各种数据源导入数据。Excel在手动数据输入和复制/粘贴操作方面特别有用。它能消除重复项,查找和替换内容,检查拼写,还有用于转换数据的许多公式。但Excel很快陷入困境,不适合庞大数据集。
三、大数据工具:数据挖掘
一旦数据经过清理和准备,你可以通过数据挖掘开始搜索数据了。这时你执行这个实际的过程:发现数据、做出决定和进行预测。
数据挖掘是大数据流程的真正核心。数据挖掘解决方案通常底层很复杂,但竭力提供 一种外观漂亮、对用户友好的用户界面,说起来容易做起来难。数据挖掘工具面临的另一个挑战是:它们确实需要人来编制查询,所以数据挖掘工具的好坏取决于使用它的专业人员。
7. RapidMiner
RapidMiner是一款易于使用的预测分析工具,有着对用户友好的可视化界面,这意味着你没必要编写代码即可运行分析产品。
8. IBM SPSS Modeler
IBM SPSS Modeler是一款包括五个数据挖掘产品的套件,面向企业级高级分析。另外IBM的服务和咨询首屈一指。
9. Teradata
Teradata为数据仓库、大数据和分析以及营销等应用提供端到端解决方案。这一切意味着贵公司可以真正成为数据驱动的公司,另外还有商业服务、咨询、培训和支持。
图2:与许多目前的大数据工具一样,RapidMiner解决方案也支持云
四、大数据工具:数据可视化
数据可视化是指以一种可读、实用的格式显示你的数据。你可以查看图表图形以及直观显示数据的其他图像。
数据可视化既是一门科学,又是一门艺术。随着大数据从有大批数据科学家支持的高管转移到整个公司上下,众多员工可以使用可视化工具极为重要。销售代表、IT支持和中层管理,这些团队个个都需要能够理解数据,因此重点放在易用性上。然而,易于阅读的可视化有时与来自深度特征集的数据读出相冲突,这带来了数据可视化工具面临的主要挑战之一。
10. Tableau
Tableau是该领域的领导者,其数据可视化工具专注于商业智能,无需懂得编程,即可创建各种地图、图表、图形及更多可视化元素。它共有五款产品,一款名为Tableau Public的免费版供潜在客户试用。
11. Silk
Silk是Tableau的简单版,让你可以通过地图和图表将数据可视化,无需任何编程。你在首次加载Silk时,它甚至会试着将数据可视化。它还让用户很容易在网上发布结果。
12. Chartio
Chartio使用自己的可视化查询语言,只要点击几下鼠标即可创建功能强大的仪表板,无需懂得SQL或其他建模语言。它有别于其他工具的地方主要在于,你可以直接连接到数据库,因此不需要数据仓库。
13.IBM Watson Analytics
IBM Watson Analytics结合了机器学习和人工智能,有助于提供智能数据科学助手,为业务分析员和数据科学家等拥有众多数据科学技能的用户扮演了向导。
·大数据工具的三个层次·
普华永道的移动数据和分析计划首席技术官Ritesh Ramesh表示,就先进程度和市场战略而言,大数据工具可分成三层金字塔。
第一层:最庞大的是一系列开源工具。每家公司以开源起家,像Cloudera和Hortonworks。除了基本的基础设施、服务器和存储外,没有多大的价值。大多数云厂商已将这一层实现了商品化。
第二层:在这一层,大多数这类厂商已有意增加各自的市场份额,在开源工具上面构建一些专有应用程序,从而做到与众不同。举例说,Cloudera开发了许多产品,比如驻留在Hadoop核心上的数据科学平台。
第三层:这些是针对特定垂直领域的应用程序。这些公司大多与普华永道、高知特或埃森哲等系统集成商合作。真正的价值出在这里,这对大数据工具开发商来说也是非常有效的竞争策略。
Ramesh表示,除了基本功能外,这些工具的三大方面备受欢迎。首先是数据处理工具。他说:“数据学习工具是客户的工具箱中确保数据质量和分析数据的重要工具,比如处理5000万行数据以发现洞察力。”
他表示,领先的厂商包括Trifacta、Paxata和Talend。
第二大类应用程序是治理,比如你如何定义元数据。他说:“好多人在这方面遇到困难。人们只是将大量垃圾数据倒到数据湖。市面上可在数据湖中积极发挥功效的工具不多。由于这项工作主要由IT人员完成,他们更有兴趣将数据倒到数据湖,而不是确立一种治理结构。”
主要厂商包括Waterline Data、以数据编目工具见长的Tamr和Collibra。
Ramesh说,经常出现的第三大需求是安全。他说:“人们希望一个产品就有安全访问的所有层(列、行和对象)。他们希望一款产品为不同的数据对象支持用户访问和安全。这也是个新兴领域。”
这个领域的主要厂商是Wandisco和FireEye。
End.
来源:网络大数据
文章推荐
一份高质量数据分析报告的三板斧
如何完成一份高质量数据分析报告
不同行业的软件都爱用什么编程语言开发?
2018年一定要收藏的20款免费预测分析软件! 免费视频课程
【IT168 技术】本文推荐一些免费的预测分析软件,它们主要用于分析统计使用,机器学习和数据挖掘来寻找关于客户行为,市场趋势和原始数据集中其他领域的线索的相关性和模式。其中一些预测建模解决方案可通过许可,免费获得开源或社区版本;其中一些预测分析软件是商业版本的免费版或社区版,但提供的功能较少。
什么是预测分析软件?
预测分析是高级分析的一个分支,用于对未来未知事件进行预测。预测分析使用数据挖掘,统计,建模,机器学习和人工智能等多种技术来分析当前数据,以预测未来!那么下面将为大家简单介绍一下以下的20多款工具!
1.R Software Environment
R是用于统计计算和图形的免费软件,可运行在各种UNIX,Windows和Mac OS平台上。R提供了广泛的统计功能,如线性,非线性建模,经典统计测试,时间序列分析,分类,聚类和图形技术。它也是高度可扩展的,提供数据操作,计算和图形显示,数据处理,数组计算,数据分析工具,包括条件,循环和许多其他功能的编程语言。语言主要用于统计方法论的研究,R为它们提供了一个开源的途径,可以在R中产生精心设计的质量图,包括数学符号和公式。
2.Dataiku
Dataiku Data Studio(DSS)是一个软件平台,汇总了从原始数据到生产应用程序所需的所有步骤和大数据工具。DSS分析数据通过简单的界面操作,即可找到数据中的相关性和重要变量,并测试最佳拟合模型。DSS还可以将模型和预测值发布到各种其他目的地,例如ElasticSearch,FTP服务器和内部数据仓库。
▲
3.Orange Data mining
Orange Data mining是一个开源的数据可视化和分析工具。数据挖掘是通过可视化编程或通过Python脚本完成的。Orange会记住这些选择,提供最常用的组合,并智能地选择要使用的小部件之间的通信通道。可以利用情节,条形图,树状图,网络和热图来进行可视化。有机器学习的组件,可用于生物信息学和文本挖掘。该解决方案包含了用于数据分析的功能,并且在Orange中有超过100个小部件。
▲
4.RapidMiner
RapidMiner可作为数据分析的独立应用程序使用,也可作为集成到专有产品中的数据挖掘引擎。RapidMiner提供数据挖掘和机器学习程序,包括数据加载和转换,数据预处理,可视化,建模,评估和部署。RapidMiner是用Java编程语言编写的。它采用的学习计划和归属来自于Weka的机器学习环境,统计建模方案来自R Project。可用于文本挖掘,多媒体挖掘,功能设计,数据流挖掘的集成方法的发展,以及分布式数据挖掘。
RapidMiner v6.0仍然是开源的。RapidMiner的最新版本现在仅作为试用版或商业许可证提供。
▲
5.Anaconda
Anaconda是一个由Python支持的开放式数据科学平台。 Anaconda的开源版本是Python和R的高性能版本,包括超过100种用于数据科学的最受欢迎的Python,R和Scala软件包。还可以访问超过720个软件包,可以使用包含在Anaconda中的conda,包,从属关系等。
▲
6.KNIME
KNIME桌面版是开源的,是用户友好的数据访问,数据转换,初步调查,预测分析,可视化和报告的图形工作台。开放的集成平台提供了1000多个模块或节点。KNIME还提供了基于数据信息开发报告的能力,并将新见解的应用自动化回到生产系统。KNIME产品有KNIME Desktop,KNIME Professional,KNIME Team Space,KNIME Server和KNIME Cluster Execution。 KNIME Desktop可以自由下载到桌面。基于Eclipse平台的,并且有双重许可证。非开源产品中的功能包括共享存储库,身份验证,远程执行,调度,SOA集成和Web用户界面。
▲
7.DMWay
DMWay使得预测分析更易于获取并且价格合理。DMWay解决方案允许用户在几个小时或几天而不是几个月的时间内建立更好的预测模型,这可以适应任何行业。DMWay分析引擎可以提供最高级别的建模。分析引擎设计用于模拟经验丰富的数据科学家采取的步骤,以建立准确有效的分析模型。DMWay评分引擎是建议企业寻求协助部署由分析引擎提供的预测分析结果的工具。
这个创新的解决方案是通过使用专家系统方法而不是“机器人”方法来实现的,模仿有经验的数据科学家关于构建大规模预测模型的方式。DMWay评分引擎是为企业寻求协助部署由分析引擎提供的预测分析结果而推荐的工具。
▲
8.HP Haven Predictive Analytics
HP Distributed R是R语言的开源,可扩展和高性能平台,可加速大规模机器学习,统计分析和图形处理。Haven Predictive Analytics为HP Vertica提供数据加速和原生SQL支持。与市场领先的列式MPP数据库的本地集成将总体数据访问性能提高了5倍,并提供了一整套经过验证的开箱即用的并行算法,以成熟的标准R算法生成准确一致的结果。是预测分析免费,完全兼容开源R语言和工具,并得到惠普企业的支持,并按每个节点定价。HP Haven Predictive Analytics由HP Vertica和Distributed R提供支持。Distributed R是基于与HP Labs开发的开放源代码R语言的高性能分析引擎,可满足要求最苛刻的大数据预测分析任务。分布式R提高了性能,并允许用户分析比以前流行的R统计编程语言更大的数据集。
9.GraphLab Create
GraphLab Create是一个为开发人员和数据科学家构建的机器学习平台,具有函数式编程技巧和对数据科学的一些基本理解。能够轻松地实现从想法到生产的原型和规模。示例服务包括推荐系统,欺诈检测或客户流失预测器。开发人员和数据科学家能够快速部署并轻松与其他应用程序集成。Discover版本提供免费的开发者许可证,并提供社区论坛支持。
▲
10.Lavastorm分析引擎
Lavastorm分析引擎公开版是一个易于使用,成本效益的工具,用于临时发现和业务分析。公开版对于希望将分析处理能力放在桌面上的用户非常理想,而且不需要大型数据处理能力,提供自动持续分析和协作功能。Lavastorm是一种可视化的数据发现解决方案,可以让你快速整合不同的数据,轻松发现洞察,并持续检测异常,异常值或模式。它为企业用户提供自助服务能力,为IT用户提供集成,分析和业务控制领域的快速开发能力。其功能包括从任何来源(包括大数据源)获取,转换,合并和丰富数据,而不需要大量建模,预先规划或用脚本。可检测数据问题,如完整性,格式不一致,准确性,自动化评估和清理流程。
▲
11.Actian Vector Express
Actian Analytics Platform(Express Hadoop SQL Edition)是Hadoop内部运行100%的免费社区版的端到端分析平台。Actian分析平台将Hadoop转变为一个高性能的分析平台,使企业能够通过分析来自多个来源的数据而无需采样,从而提高预测和决策的准确性。Actian Express,Hadoop SQL Edition使用现有的Hadoop集群提供高速和性价比。Actian Vector Express是Actian分析平台的免费社区版本,旨在提供快速简单的方法来提高分析的性能。它建立在基于矢量的分析数据库基础之上,Actian Express提供很好的性能和性价比,并且需要更少的硬件,几乎不需要调整。Actian Vector Express包括以下功能:分析工作台 - 快速构建可视工作流程准备,转换和分析数据,分析数据库 - 在几秒钟内运行复杂的查询反对数十亿条记录和管理控制台。
▲
12.Scikit-learn
scikit-learn是简单高效的数据挖掘和数据分析工具。它是Python中的机器学习库,建立在NumPy,SciPy和matplotlib之上,它也是开源的。其特点包括分类,回归,聚类,降维,模型选择和预处理。
▲
13.微软R
R是强大的,用于统计计算,机器学习和图形的首选编程语言,并得到用户,开发者的繁荣的社区支持。R家族包括,服务器,客户端,SQL Server等服务。支持各种大数据统计,预测建模和机器学习功能,R Server支持基于开源R的全方位的分析探索,分析,可视化和建模。Microsoft R客户端是免费的社区支持。
14.H2O.ai
H2O是一个开源的预测分析平台。H2O用户可以轻松地从微软Excel和RStudio中探索和建模大数据,并将其与来自HDFS,S3,SQL和NoSQL数据源的数据连接起来。H2O讲述了数据科学的语言,支持R,Python,Scala,Java和强大的REST API。业务应用程序由H2O的NanoFastTM评分引擎提供支持。包括:分布式算法和回归树,如GBM,随机森林(RF),广义线性模型(GLM),k-均值和主成分分析(PCA)。
15.Weka Data Mining
Weka是用于数据挖掘任务的机器学习算法的集合。算法可以直接应用于数据集,也可以从Java代码调用。Weka包含用于数据处理,分类,回归,聚类,关联规则和可视化的工具。它也非常适合开发新的机器学习方案。 Weka是用Java编写的,由新西兰怀卡托大学开发。
▲
16.Apache Spark
Apache Spark是用于大规模数据处理的快速且通用的引擎。Spark需要一个集群管理器和一个分布式存储系统。对于集群管理,Spark支持独立(本地Spark集群),Hadoop YARN或Apache Mesos。对于分布式存储,Spark能与各种各样的,包括Hadoop分布式文件系统(HDFS),MAPRA文件系统(FS-MAPRA),Cassandra,OpenStack Swift,亚马逊S3,Kudu,或自定义解决方案实现对接。
17.Octave
Octave是数字计算的高级解释语言。它提供了数据可视化和操纵的线性,非线性问题和图形的解决方案。有许多可用于公共数值线性代数解决问题的工具,寻找非线性方程的根,集成普通功能,操纵多项式,及整合的普通微分和代数微分方程。
▲
18.Tanagra
Tanagra是一个用于学术和研究目的的免费数据挖掘软件,它具有探索性数据分析,统计学习,机器学习和数据库等多种数据挖掘方法的功能。支持标准的数据挖掘任务,如:可视化,描述性统计,实例选择,特征选择,功能建设,回归,影响因子分析,聚类,分类和关联规则的学习。
19.PredictionIO
PredictionIO是一款开源的机器学习服务器,可以让软件开发人员创建个性化,推荐和内容发现等预测功能。通过PredictionIO,预测这种特点的用户行为,提供个性化的视频,新闻,交易,广告,职位,事件,文件,应用程序,餐馆和匹配服务。
20.Apache Mahout
Apache Mahout提供可扩展的机器学习算法,主要集中在协作过滤,聚类和分类。许多实现使用Apache Hadoop平台,包括成熟的Hadoop MapReduce算法,Scala,Spark和H2O算法。协同过滤:基于用户的协同过滤,基于项目的协同过滤,矩阵分解与ALS,矩阵分解与隐式反馈和加权矩阵分解,SVD + ALS。
巧用工具,快速入门数据分析 企业视频课程
一提到数据分析,很多人可能脑海中可能会浮现出各式各样的数据画面。
比如下图所示,这样的中国式复杂报表在企业中经常被使用,精密的复杂表格样式中蕴含着国人庞大的数据信息量。
再比如这样的数据Dashboard可视化,通常应用于展示KPI业务指标,例如销售额、毛利率、利润率等等,数据的可视化呈现形式清晰直观。
再就是目前火热的不行的可视化大屏,比如下图所示的双11全球天猫狂欢节当日的实时交易统计大屏,除了清晰直观地展示企业核心的KPI指标之外,狂拽炫酷是它至关重要的特征。
大道至简的数据分析方法
但无论是以上的哪一种,无论数据如何变换,所有看似神秘的数据分析过程都可以归纳总结为各种“维度+度量”的组合分析。
维度用于描述事物的属性信息,例如统计各个地区的交易数量时,地区就是维度。
度量(指标)是可以量化统计的数值,例如统计各个地区的交易数量时,交易数量就是度量。但是需要注意的是并不一定所有的数值都是度量,例如学生的学号虽然是数值类型,但是其实它是维度而非度量。
如此一来,我们对数据分析有了从整体上的解释。但是实际应用中,我们并非盲目地去进行各种维度和度量的拼凑组合,而是希望得出的数据分析结果能够指引业务进行决策,终而形成业务闭环效果的。
根据我自身的一些数据分析项目经验,90%以上的基本数据分析问题都可以套用我总结的这七步完成(深入的数据分析需涉及描述性统计分析、相关性分析等专业的统计分析技能):
数据分析必然需要借助工具,Excel、BI或者R和Python语言都可以帮助实现。
这里为了帮大家更快速地理解数据清洗建模和数据差异分析环节的内容,借助比较简单的BI工具FineBI,为大家进行一个销售数据分析实例,加深大家对数据建模和数据分析过程的理解。感兴趣的可以到官网下载,个人完全免费。
一、确定分析目标
这是分析前的第一步,我们需要明确进行数据分析的对象,也就是需要确定分析目标。
通常来说我们会选取最关心的核心KPI指标,例如电商行业的销量、销售额、利润,制造行业的次品率,互联网行业的用户留存率等等。
一般来说,分析目标不要过多,如果实在是需要同时分析多个关键核心业务KPI指标,那么我们便可以将这些核心指标分解给对应业务负责人,例如销售总监负责提升公司销售业绩,运营总监负责降低成本花费。
二、核心目标拆解
确定好分析目标之后,通常来说我们需要再对核心目标进行子目标分解,这也符合企业各团队分工协作的特性。
核心目标拆解的过程中需要遵循MECE原则,也就是“完全穷举,相互独立”。例如下图所示的电子商务数据分析指标体系,就分别从网站运营指标、经营环境指标、销售指标、营销活动指标、客户价值指标几个方面进行了详尽的拆解,然后交由各个团队进行分工达成。
三、数据清洗和业务建模
确立和分解好数据分析目标之后,下一步就可以进入到数据清洗和业务建模环节了。
数据清洗方面,很多人可能会想到国外传统的一些ETL工具,但是这类工具过于庞大和复杂,国内真正成功落地的案例很少。FineBI商业智能工具其实就提供了轻量级的ETL功能可供用户对数据进行计算和处理,鼠标点击和拖拽操作即可完成轻量的ETL数据处理过程。
业务建模方面,FineBI也是提供了根据不同业务主题分类建立业务包的功能,一般来说按照维度表和事实表建立好关联关系即可,这样一来就为前端的数据差异分析准备好了数据模型。
四、数据差异分析
终于到了数据差异分析这一步,这也是离发现问题原因和业务决策最近的一步。
所谓数据差异分析,自然是需要有差异,才能有分析。
例如今年某某企业7月份的销售额是600万,那么大家会觉得对于这个企业来说是好还是坏?如果只有这一个数据,自然是无所谓数据差异分析的。
如果这家企业的6月份的历史销售额是400万,那么7月份600万的销售额自然是非常好的了,可是如果这家企业的6月份历史销售额是800万,7月份600万的销售额明显是有问题的。
a.纵向对比
按照这个基础的数据差异分析逻辑,我们借助FineBI来初步分析一下某家企业今年各月度的销售额统计走势图:
如上图所示,通过纵向对比不难看出该企业在7月份销售额下降严重,环比6月份的企业销售额下降了22.47%,不是个好现象。老板看到这个数据自然会前来问责,说为什么7月份公司销售业绩下滑这么厉害。那么会是什么原因导致企业7月的销售业绩相对6月下滑这么多呢?我们需要更新一步地进行数据分析,以排查出导致产生问题的”真凶“。
b.横向对比
一般来说销售型企业都会在全国划分各个销售区域,那么这样一来我们除了对时间进行纵向对比之外,还可以结合销售大区维度进行横向比较,分析探索看看能不能发现一些问题。
果不其然,如上图所示,通过时间维度结合销售大区进行横向对比发现,企业的东南大区7月份的销售额相对6月份反而是增长的,看来问题主要出在北方区和中西区,特别是北方区7月份的销售业绩下滑更为严重,最终导致企业7月份总的销售额比6月份严重下滑。
数据分析的丰富度一定程度上依赖于分析工具的功能,比如Excel可能需要写VBA,R和Python需要写代码。
由于FineBI是一款商业智能工具,故而这边可以轻松通过其提供的OLAP联动分析功能,以更进一步的观察各个区域7月份的表现情况,直接点击饼图区域即可联动到月度销售额统计,非常方便。这边我们可以看出,中西区7月份销售额环比轻微下降17.86%,北方区下降严重到50.07%,而东南区则提高了6.06%,综合三个大区的总体销售状况,导致最终表现为7月份销售额环比下降了22.47%。
c.综合对比
上面分析了时间、区域维度相关的销售额结果统计,为了避免结论片面,我们尽量采用多维度的综合对比方式来观察数据,甚至可以是友商的销售情况对比进行差异分析(此处不单独举例说明)。
如上图所示,我们通过时间维度结合产品类型来进行销售额分析,观察7月份各个产品线的数据发现各个产品线在7月份销售额环比都是有所下降的,这说明企业7月份销售额下降和产品种类本身是没有关系的。
五、发现问题原因
综合北方区域和中西区域导致7月份销售额环比下降的各种影响因素,最终发现是由于6、7月份北方区域降雨严重,导致物流周转严重滞后,库存商品无法及时供应,最终导致北方区域7月份销售业绩严重下滑了50.07%。而中西区域本身仓库比较小,按照之前各区域商品物流周转的设计,中西区域的本土供应的差额商品主要是由北方区域供应,但是北方区域由于严重的降雨导致物流周转严重滞后,进而导致中西区域7月份销售业绩也同比下滑了17.86%。
六、制定业务决策
通过结合FineBI工具的OLAP多维数据综合分析方法成功定位到问题原因之后,企业及时调整仓库商品物流周转策略,北方区域物流模式调整为水运,同时将东南区域的部分商品通过物流周转到中西区域。
七、评估决策效果
企业领导决策层8月份通过及时调整北方区域和中西区域的物流策略,北方区域物流模式调整为水运,东南区域的部分商品通过物流周转到中西区域,补充了北方区域和中西区域的库存商品周转。最终8月份企业的总体销售额达到了943万,环比7月销售额提高到了37.32%。
后记
随着信息化的飞速发展,大数据产业呈指数式增长。在我们不断地积累着企业的历史数据的同时,如何利用和分析好这些数据,真正利用大数据分析驱动企业的业务增长也成为了一个很重要的难题。希望本文给大家分享的数据分析方法,结合FineBI商业智能分析工具的OLAP多维分析能力,能够让大家下次在面对企业业务数据分析时不再迷惑,做到步步为营,让数据分析真正释放出潜能,驱动业务快速增长,形成数据和业务之间的闭环
大数据时代,申请商业分析专业是一种什么体验? 推广视频课程
Your School Out of Campus
BA, Business Analytics, 翻译成中文叫 “商业分析” ,也可以把这门新兴的专业叫做 “商业数据分析” 。学习这门专业,就是学习如何应用商业世界中的数据。比如亚马逊可以根据你的购书历史,推荐你可能会感兴趣的书籍;或者沃尔玛根据你的购买记录,发放对应的优惠券;或者通用电气通过分析供应链数据,削减成本,提升效率,这些都属于商业数据的应用。
BA这门专业主要会学习一些用于分析数据的编程软件,比如SAS, R, Oracle等;接着会学习如何清理数据,分析数据,将数据可视化;最后会学习如何将数据应用在不同的商业领域,比如市场分析、供应链优化;风险分析等。
商业分析
数据帮你做决定
数据最能直观地将消费者的喜好展现在企业的面前。网页的按钮设计成方形还是圆形?收藏的图标设计成※还是?知乎Live是文字分享好还是语音分享好?用户会用自己的选择投票。于是一个产品特性的去留大多数时候不再由经理拍脑袋决定,更多的是由用户决定。大部分学生选择这个专业的原因之一,也是因为它有助于形成用数据支撑论点的思维模式。
从2016年起,美国越来越多的学校增加BA的项目开设,也有不少名校开设了BA专业,比如说麻省理工学院、哥伦比亚大学、西北大学、康奈尔大学、南加州大学、北卡罗来纳大学教堂山分校、纽约大学等。大多数开设在商学院,少数在工程学院、信息管理学院以及统计与运筹学院。
在大数据背景下,公司纷纷开始运用数据来辅助各项方案的策略的制定或者对市场行情的理解。这就意味着,跟商业分析时或相关的岗位会成为商业领域里越来越重要的角色,像管理分析师、运筹分析师、数据分析师、市场研究分析师、物流师等岗位的需求量会越来越大。根据美国各行各业就业数据的统计分析显示,这些岗位在未来5年的时间有超过20%的岗位需求量的增长,薪资水平也都在8万到12万美金至今,远高于商业与金融领域的整体年薪水平。
申请BA
商业分析作为交叉学科,需要申请的学生具备商科背景以及数理背景,而国内外院校本科阶段不直接设立商业分析这个专业,因此对于申请者的要求也相对较高。也有部分学校强调,喜欢招生来自数学、计算机、统计、工程、经济学和金融等领域定量分析能力强的学生,如旧金山大学。总体来看,来自任何背景的学生均可以申请此专业,但数理能力强的学生在申请过程中更有优势。
所以说,商科专业背景的同学需要着重弥补数学、统计、编程方面的课程和实践经历,例如在Coursera上自学相关编程软件或者学习Python的系列课程并拿到相关证书等等。而数学、统计等数理背景的同学,则需要增强自己在商业分析方向上的科研或者实习经历,并且对自己的面试能力进行系统训练。
具体来说,商业分析专业希望或要求申请者至少能学过高等数学、线性代数各一年,学过概率论和统计相关知识,并且具备一定的编程能力,例如至少学过一些编程语言或者能使用一些数据分析的程序软件等等。
另外,BA的申请有越来越火的趋势,建议在力所能及的范围内多投几所感兴趣的学校。
了解更多海内外教育资讯,请关注【微邦WeBond】或私信小编。
数据分析都用什么工具 推广视频课程
欢迎关注天善智能,我们是专注于商业智能BI,大数据,数据分析领域的垂直社区,学习,问答、求职一站式搞定!
本文是上一篇文章《全国及重点城市“数据分析”岗位需求量及工资水平分析》的续篇,从“数据分析”职位招聘单位给出的职位描述中分析各种工具的热门程度。
1.整体概览
经常看见有网友争论R和python谁才是主流的数据分析工具,网友们分门别派各抒己见。今天我们从实际需求出发,在招聘单位的职位描述中用正则表达式匹配统计常用的数据分析工具出现的频率,看看谁才是你最应该掌握的工具。
话不多说,先上图
毫无疑问,excel才是最主流的数据分析工具,在招聘单位的职位描述中出现频率远远高于其他工具(实际上居第八位的office也含有excel,其真实数据应该比这还高),作为最基础的工具,excel是一个数据分析工作者的必备技能。excel之后的4门工具分别是sqlsever、spss、sas和r,其中排名第二位的sqlsever频率高出另外两门主流数据库语言mysql、oracle近两倍,spss作为无需编程的专业统计软件也在职位描述中有较高的频率,sas则是编程类统计软件的代表,今年来火热的r语言也水涨船高,另一门火热的程序语言python在数据分析方面则要稍稍落后。
2.各职位具体情况
数据分析也有细分很多具体职位,那么不同的职位以上各种工具的要求是否存在差异呢?
表中数据显示“大数据分析师”需掌握的工具主要是r、python、hadoop、spark和java;“数据分析工程师”需要掌握的工具主要是sqlsever、r、python和hadoop,这两个职位都很看重编程开发能力。
“数据分析经理”、“高级数据分析师”和“数据分析师”需要掌握的工具大体一致,均为excel、sqlsever、spss、sas和r。
“数据分析主管”、“数据分析”、“数据分析专员”和“数据分析员”等职位对基础技能的要求更为突出,excel、ppt、word等office办公软件出现的频率较其他工具明显更高。
作为一名数据分析从业者或者想转行过来的人来说,要想有好的职业发展,首先,必须熟练掌握office办公软件,尤其是excel(不要瞧不起excel,你不一定玩得转);其次,还需要学习一门数据库语言,sqlsever是不错的选择(mysql、oracle与sqlsever较为类似,通一门后,其他的学起来也很容易);专业的统计分析工具也需要掌握一门,如果讨厌编程,可以选择spss,如果有编程能力那么sas和r可以选择一个学习,如果你精通python也可以用python做统计分析;如果想往大数据方向发展,或者是做数据分析工程师那就还需要掌握python、hadoop等工具。
最后附上一张数据分析职位描述的词云图,可以看出招聘单位除了看重工具的使用外,也很注重分析、业务、经验、沟通、团队等方面的能力。
本文作者:Mr.Hu,转自:一胡诌先生