网站性能检测评分
注:本网站页面html检测工具扫描网站中存在的基本问题,仅供参考。
python强类型
到底学Python还是Java? 行业视频课程
JAVA和Python都是很火的很强大的编程语言,用一个成语形容的话就是“恐怖如斯”,对于新人而言当然会选择一种具有吸引力的去学习,当最开始接触 Python 的时候,会觉得它是一门脚本语言,但是后来发现这是误解。你也可以在 Python 中进行面向对象的编程。现在 Java 和 Python 都已经成为主流,我们来看看分析比较:
1.难易度而言。python远远简单于java。
2.开发速度。Python远优于java
3.运行速度。java远优于标准python,pypy和cython可以追赶java,但是两者都没有成熟到可以做项目的程度。
4.可用资源。java一抓一大把,python很少很少,尤其是中文资源。
5.稳定程度。python3和2不兼容,造成了一定程度上的混乱以及大批类库失效。java由于有企业在背后支持所以稳定的多。
我们可以这样理解,C好比手动挡车(编译型语言),java和python(解释型语言)好比自动档车。跑的最快的车都是手动档,但是对开不好的人来说,开自动档反而更快些。
根据上述比较我们依然很难得出应该学习哪个语言,来我们就来看图说话:
我们可以看出JAVA很啰嗦,就像“唐僧”一样,在 Java 中读一个文件要写10行代码,而在 Python 中只要两行。这一回合我们的Python得到了优势,因为对于刚开始学的人都喜欢少的,第二个就是关于静态变量,动态变量,你需要强类型的语言和严谨的编译器来检测犯二的代码。在 Java 中,你不会看到,在一个字符串变量中接着存整型变量。执行速度是企业级应用的命脉,你可以看到 Java 比 Python 快,但是要记住,你需要编译才能运行 Java 程序,而 Python 程序不要编译可以直接运行。
Python 控制台可以直接解释 python 命令,这对于新手来说意味着会更加简单!所以现在 Python 和 Java 2:2,扯平了。虽然你还会看到 Java 中 hello world比 Python 需要更多行代码,但最终你会发现,他们二者的能力是一样的,没有谁差。当然,学 Java 并把它当成职业生涯的编程语言,你绝不会后悔。但与此同时,你可以在任何时候学习 Python,这对于写一些小的工具集也非常有用。
我们来总结一下, Python是给人设计的(人生苦短,请用Python), C/C++更像是为机器设计的,而Java则介于两者之间.
如果你是高手, 写出的代码没什么bug, 也不用怎么调试, 那推荐你用python(前提是他的慢你能忍受. 当然,高手眼里, 他会的就是最好的....)
如果你写的代码bug多,大部分时间在调试代码,你可能需要了解一下Java, 或者写足够多的testcase.
看了Python的应用领域和就业前景,难怪有好多人去学 互联网视频课程
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。
常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。
需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
Python特点
1、Python使用C语言开发,但是Python不再有C语言中的指针等复杂的数据类型。
2、Python具有很强的面向对象特性,而且简化了面向对象的实现。它消除了保护类型、抽象类、接口等面向对象的元素。
3、Python代码块使用空格或制表符缩进的方式分隔代码。
4、Python仅有31个保留字,而且没有分号、begin、end等标记。
5、Python是强类型语言,变量创建后会对应一种数据类型,出现在统一表达式中的不同类型的变量需要做类型转换。
Python搭建开发环境
1、可以到python.org下载安装包,然后通过configure、make、makeinstall进行安装。
2、也可以到activestate去下载ActivePython组件包。(ActivePython是对Python核心和常用模块的二进制包装,它是ActiveState公司发布的Python开发环境。ActivePython使得Python的安装更加容易,并且可以应用在各种操作系统上。ActivePython包含了一些常用的Python扩展,以及Windows环境的编程接口)。对ActivePython来说,如果你是windows用户,下载msi包安装即可;如果你是Unix用户,下载tar.gz包直接解压即可。
3、Python的IDE,包括PythonWin、Eclipse+PyDev插件、Komodo、EditPlus。
Python的应用
1、系统编程:提供API(ApplicationProgrammingInterface应用程序编程接口),能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。
2、图形处理:有PIL、Tkinter等图形库支持,能方便进行图形处理。
3、数学处理:NumPy扩展提供大量与许多标准数学库的接口。
4、文本处理:python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。
5、数据库编程:程序员可通过遵循PythonDB-API(数据库应用程序编程接口)规范的模块与MicrosoftSQLServer,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。
6、网络编程:提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet及BitTorrent.Google都在广泛地使用它。
7、Web编程:应用的开发语言,支持最新的XML技术。
8、多媒体应用:Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。
9、pymo引擎:PYMO全称为pythonmemoriesoff,是一款运行于SymbianS60V3,Symbian3,S60V5,Symbian3,Android系统上的AVG游戏引擎。因其基于python2.0平台开发,并且适用于创建秋之回忆(memoriesoff)风格的AVG游戏,故命名为PYMO。
10、黑客编程:python有一个hack的库,内置了你熟悉的或不熟悉的函数,但是缺少成就感。
用Python写简单爬虫
通过上面这三句就可以将URL的源码存在content变量中,其类型为字符型。
接下来是要从这堆HTML源码中提取我们需要的内容。用Chrome查看一下对应的内容的代码(也可以用Firefox的Firebug)。
可以看到url的信息存储在span标签中,要获取其中的信息可以用正则式。
Python应用场景
1、Web应用开发
Python经常被用于Web开发。比如,通过mod_wsgi模块,Apache可以运行用Python编写的Web程序。Python定义了WSGI标准应用接口来协调Http服务器与基于Python的Web程序之间的通信。一些Web框架,如Django,TurboGears,web2py,Zope等,可以让程序员轻松地开发和管理复杂的Web程序。
操作系统管理、服务器运维的自动化脚本
在很多操作系统里,Python是标准的系统组件。大多数Linux发行版以及NetBSD、OpenBSD和MacOSX都集成了Python,可以在终端下直接运行Python。有一些Linux发行版的安装器使用Python语言编写,比如Ubuntu的Ubiquity安装器,RedHatLinux和Fedora的Anaconda安装器。GentooLinux使用Python来编写它的Portage包管理系统。Python标准库包含了多个调用操作系统功能的库。通过pywin32这个第三方软件包,Python能够访问Windows的COM服务及其它WindowsAPI。使用IronPython,Python程序能够直接调用.NetFramework。一般说来,Python编写的系统管理脚本在可读性、性能、代码重用度、扩展性几方面都优于普通的shell脚本。
2、科学计算
NumPy,SciPy,Matplotlib可以让Python程序员编写科学计算程序。
3、桌面软件
PyQt、PySide、wxPython、PyGTK是Python快速开发桌面应用程序的利器。
4、服务器软件(网络软件)
Python对于各种网络协议的支持很完善,因此经常被用于编写服务器软件、网络爬虫。第三方库Twisted支持异步网络编程和多数标准的网络协议(包含客户端和服务器),并且提供了多种工具,被广泛用于编写高性能的服务器软件。
5、游戏
很多游戏使用C++编写图形显示等高性能模块,而使用Python或者Lua编写游戏的逻辑、服务器。相较于Python,Lua的功能更简单、体积更小;而Python则支持更多的特性和数据类型。
6、构思实现,产品早期原型和迭代
YouTube、Google、Yahoo!、NASA都在内部大量地使用Python。
Python的应用方向
1.常规软件开发
Python支持函数式编程和OOP面向对象编程,能够承担任何种类软件的开发工作,因此常规的软件开发、脚本编写、网络编程等都属于标配能力。
2.科学计算
随着NumPy,SciPy,Matplotlib,Enthoughtlibrarys等众多程序库的开发,Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛,有更多的程序库的支持。虽然Matlab中的许多高级功能和toolbox目前还是无法替代的,不过在日常的科研开发之中仍然有很多的工作是可以用Python代劳的。
3.自动化运维
这几乎是Python应用的自留地,作为运维工程师首选的编程语言,Python在自动化运维方面已经深入人心,比如Saltstack和Ansible都是大名鼎鼎的自动化平台。
4.云计算
开源云计算解决方案OpenStack就是基于Python开发的,搞云计算的同学都懂的。
5.WEB开发
基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。其中的Python+Django架构,应用范围非常广,开发速度非常快,学习门槛也很低,能够帮助你快速的搭建起可用的WEB服务。
6.网络爬虫
也称网络蜘蛛,是大数据行业获取数据的核心工具。没有网络爬虫自动地、不分昼夜地、高智能地在互联网上爬取免费的数据,那些大数据相关的公司恐怕要少四分之三。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一,其Scripy爬虫框架应用非常广泛。
7.数据分析
在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
8.人工智能
Python在人工智能大范畴领域内的机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
Python不能用于大型项目?关于Python的10大误解 营销视频课程
语言多元化是PayPal编程文化中一个重要的组成部分。在C++和Java长期流行的同时,更多的团队选择了Jva和Scala。同时,Braintree的收购也引入了一个久经世故的Ruby社区。Python作为一门特别的语言,在eBay和PayPal有很长的历史。而且其流行程度依然有增不减。
eBay的开发者支持Python这个应用于基层领域多年的语言。甚至在eBay管理层官方支持Python以前,技术人员就开始使用Python。我在几年前加入PayPal并选择Python来写内部应用,然而,我却发现了PayPal中将近15年以前的Python代码。
目前,Python 支撑着 超过50个项目, 包括:
功能和产品型, 例如 eBay Now 和 RedLaser运营和基础设施型**, 从开放的 OpenStack 到专有设施中间层服务和应用型**, 例如 PayPal 用来设定价格以及检测用户可用功能的那个(服务/应用)监测代理和接口*型*, 用于涉及到部署和安全的一些用例批处理任务*型*, 例如数据导入,价格调整,及其它项目以及不计其数的开发者工具
在接下来的文章里我将详细介绍那些使得 eBay 和 PayPal 的 Python 生态系统从2011年的不超过25个工程师到2014年超过260个工程师所使用的技术和举措。对于本文,我则会专注于10个不得不予以揭露的关于 eBay 和 PayPal 的企业环境的谬误。
谬误 #1: Python 是一门新语言
伴随着所有的初创公司正在使用它以及孩子们最近也在学习它的事实,这个谬误为何仍然存在是可以理解的。实际上 Python 已经 超过23岁了, 它最初发布于1991年, 早于 HTTP 1.0协议 5年且早于 Java 4年. 目前比较有著名的很早就使用 Python 的例子是在1996年: Google 的第一个成功的网络爬虫。
如果你对于长长的 Python 历史比较好奇,Python 的作者 Guido van Rossum 已经为你准备好整个故事。
谬误 #2: Python 没有被编译
不像 C++ 一样需要一个独立的编译器工具链,Python 实际上被编译成了字节码,和 Java 或者许多其他的编译型语言十分相似。更进一步的编译过程,如果有的话, 取决于运行时环境, 不管是 CPython,PyPy,Jython/JVM,IronPython/CLR,或是其它的进程式虚拟机(process virtual machine)。参考 谬误 #6 来了解更多。
一条在 PayPal 以及其它地方的通用原则就是,(应用的)安全性不能依赖于代码的已编译状态。更为重要的是加强运行时环境的安全,因为实质上每种语言都有一个解码器,或者能被拦截并导出受保护的状态。参考下一条谬误来了解更多的 Python 安全性问题。
谬误 #3: Python 不安全
轻量级 Python 的亲和力可能使他看起来不怎么可怕,但是这里直觉很大程度上是受到了误导的. 安全的一个核心原则就是尽可能让呈现的目标更小. 大系统是违背安全原则的,因为他们趋向于 使行为过渡集中化, 并且也 让开发者难于理解. Python 通过倡导简洁化来边缘化这些恶心的问题. 更有甚者, CPython 通过让自己成为一个简单、稳定并且易于审核的虚拟机来使这些问题得到解决. 事实上,近期 Coverity Software 的一个分析结果显示 CPython 得到了他们的最高质量评级。
Python 还拥有一系列可扩展的开源、产业标准化的安全库序列. 在PayPal, 我们把安全和授信看做是重中之重, 我们发现 hashlib, PyCrypto, 以及 OpenSSL, 通过 PyOpenSSL 和我们自己的定制构建的结合,涵盖了 PayPal 多样化的安全和性能需求。
这些诸多的原因,使得 Python 成为PayPal(和eBay)的应用程序安全团队在某些业务中最快的选择. 这里有把Python用在PayPal的安全第一环境中的几个以安全为基础应用程序:
创建安全代理,以促进密钥的轮换以并巩固加密实现同业界领先的 HSM 技术集成为缺乏兼容性的技术栈构建受TLS保护的封装代理为我们内部的互相认证计划生成键和证书开发主动的漏洞扫描器
另外,还有无数存在安全隐患的用Python构建,面向操作的系统, 诸如防火墙和连接管理. 未来,我们一定回去深入的整合PayPal Python的安全事项.
谬误 #4: Python 是一门脚本语言
Python 确实可以用来编写脚本,并且因其简单的语法、跨平台并且无所不在于 Linux, Macs, 和其它Unix 机器而成为这个领域的领跑者之一。
事实上, Python 可能是常规用途编程语言中最灵活的技术. 以下是一些实例:
电信基础设施 (Twilio)支付系统 (PayPal, Balanced Payments)神经科学和心理学 (许多, 许多, 例子)数值分析和工程 (numpy, numba, 以及 更多其它)动画(LucasArts, Disney, Dreamworks)游戏后台 (Eve Online, Second Life, Battlefield, 以及 其它很多)Email 基础设施 (Mailman, Mailgun)媒体存储和处理 (YouTube, Instagram, Dropbox)操作和系统管理 (Rackspace, OpenStack)自然语言处理(NLTK)机器学习和计算机版本 (scikit-learn, Orange, SimpleCV)安全性和渗透性测试 (很多很多 以及 eBay/PayPal大数据 (Disco, Hadoop support)如理 (Calendar Server, 它 驱动了 Apple iCal)搜索系统 (ITA, Ultraseek, 还有 Google)Internet 基础设施 (DNS) (BIND 10)
更别提网站和web服务了,那些都不在少数. 事实上,PayPal工程师看起来像是有兴趣致力于基于Python的web特性,比如 YouTube 和 Yelp. 如果对Python成功案例的更大清单感兴趣,那就看看官方的清单吧.
谬误 #5: Python 是弱类型的
Python 类型系统的特点是拥有强大、灵活的类型操作. 维基百科上对此作出的阐述.
而存在一个不争而有趣的事实是, Python 是比Java更加强类型的. Java 对于原生类型和对象区分了类型系统,它让null存在于一个灰色地带. 另一方面,现代的 Python 拥有一个统一的强类型系统, 其中什么都没有 的类型是明确指定的. 更进一步的,JVM自身也是动态类型的,因为可以把它的 根源 追溯到由Sun所收购的Smalltalk VM的一个实现。
Python的类型系统 很棒,但要提供给企业级使用,目前仍然还有许多更重大的事项需要关注。
谬误 #6: Python 速度慢
首先是有一个重要区别: Python 是一门编程语言,而不是运行时环境. Python 拥有几个实现:
CPython是参考实现, 且也是广泛发布和使用的实现.Jython是Python用于JVM的是一个成熟的实现.IronPython是 Microsoft 针对其自家的通用语言运行时——又名 .NET,实现的Python .PyPy是一个正在日趋成熟的Python实现,拥有JIT编译,增量垃圾收集诸多先进的特性.每一个运行时都有其自己的性能特点, 而且他们本身也不慢. 这里更重要的地方在于不能错误地把一个性能指标分派到一门编程语言智商. 应该总是把该评估用在一个应用程序运行时上面,最好是针对一个特定的使用场景。
清楚了那些事项之后,下面就是一些有Python提供的小项,体现其重要的性能优势:
把 NumPy 用作 Intel 的 MKL SIMD接口PyPy的 JIT 编译能 达到比C还快的性能Disqus 能在同样的100个盒子上容纳两亿五千万到5亿用户
诚然,这些都不是最新的列子,只是我个人的最爱罢了. 这将很容易扯到高性能Python以及独立提供的运行时这些广阔的领域. 我们不应只是专注于解决单个特殊的案例, 而是应该把注意力放在对开发人员在 最终产品性能 方面的生产力的普遍影响上面, 特别是在一种企业级环境之下。
C++ vs Python,. 两种语言在同一个输出下的对比.
给定足够的时间,一个循规蹈矩的开发者只会按照下面这种经过论证的方式来编写精确高效的软件:
设计实现一个可以正确完成任务的软件,包括开发单独的测试测试性能,明确瓶颈优化,根据测试和Amdahl法则,并且利用Python与C的渊源
虽然这听起来很简单,但是即使是老道的工程师,这依旧是一个非常耗时的过程。Python设计之初就考虑到了这一套开发流程。根据我们的经验,通常C++和Java项目完成一次迭代流程的时间,够Python项目完成三次迭代流程。今天,PayPal和eBay中不乏有Python项目使用更少的代码战胜了同类C++和Java项目,这多亏了快速的开发使得仔
细的裁剪和优化变得可能。
Myth #7: Python无法做到大规模
大规模有许多定义,但无论怎样,YouTube是个大规模网站。每月UV超过十亿,每分钟上传的视频时长超过100小时,占用互联网带宽的20%,所有这一切都以Python作为核心技术。Dropbox,Disqus, Eventbrite, Reddit, Twilio, Instagram, Yelp, EVE Online, Second Life,,以及,是的,以及eBay和PayPal中都有Python大规模的例子,这些证明大规模不仅仅是可能:它是一种模式。
成功的关是键简单性且一致性。CPython,Python的主要虚拟机,其最大限度地放大了这些特性,从而演变出了一个精确可测的运行时。人们很难发现 Python程序员关心垃圾的收集暂停或应用地启动时间。拥有强大的平台和网络支持,Python其本身自然而然的智能水平可扩展,BitTorrent就是其充分的体现。
此外,规模化主要涵盖测量和迭代。Python是以分析和优化为要义建立的。看Myth #6了解更多Python如何垂直拓展的细节。
Myth #8: Python缺少好的并发支持
除了偶尔叫嚣性能和规模化的问题,有人想提的技术些,”Python缺乏并发,”或者,”GIL怎么样?”如果几十个反例仍不足以支持Python水平及垂直拓展规模的能力,那么再更深地解释CPython实现细节也不会有帮助,所以我会简短些。
Python拥有强大的并发原语,包括generators, greenlets, Deferreds, 和futures.。Python有优秀的并发框架,包括eventlet, gevent,和Twisted。Python在定制运行时尚投入了惊人的工作量,包括Stackless和 PyPy。所有烦人这些和更多表明,根本不存工程师们在Python并发编程方面的缺憾。同时,所有这些都正在被正式的在企业生产环境中支持或使用。例如,请参考Myth #7。
全局解释器锁,或称GIL,是Python在大多数应用场景下的性能优化,也是几乎所有CPython实现代码的开发上的基础优化。GIL使得Python可以很便利地使用操作系统的线程或轻线程(通常指greenlets),且不影响使用多进程。更多相关信息,请看该主题的Q&A列表,以及Python文档中的介绍。
在PayPal中,一个典型服务的部署需要多台机器,多个进程,多个线程,以及一个数字非常庞大的greenlets,相当于一个非常强大可扩展的并行环境(见下图)。在大多数的企业环境中,团队更倾向于往更高层次过度,谨慎并注重灾难恢复。然而,在某些情况下,每台机器每天Python服务仍然处理数以百万计的请求,而且轻松处理。
一个基于单一worker的协同异步架构草图。最外层的盒子是进程,下一个层次为线程,这里这些线程都是轻线程。操作系统处理线程间的抢占,而I/O异步协同合作。
谬误 #9: Python 程序员很稀缺
事实上,现在使用 Python 的 web 开发者的确没有使用 PHP 或者 Java 的 web 开发者多。这可能主要是由于企业需求和教育之间的相互作用导致的,不过 教育领域(教学所使用的编程语言)的趋势使得情况可能产生变化 。
也就是说,使用 Python 的开发者并不稀缺。现在全世界有数百万使用 Python 的开发者。已有几十个Python 技术大会、 StackOverflow 上成千上万的 Python 内容问答、雇佣大量使用 Python 的开发者的大企业比如 YouTube 、 美国银行( Bank of American )和 LucasArts/Dreamworks 等等,这些都显而易见地证实了这一点。在 eBay 和 PayPal 我们一直保持拥有几百位使用 Python 的正式开发者,这是怎么做到的呢?
那么,当一个项目被创建时为什么它会被首推?对于孩子来,大学生和教授们来说,Python作为第一门程序设计语言是非常易于学习的。在eBay,仅仅需要一个星期,一个新的Python程序员就能展示一个真正的成果,并且他们开始散发光芒常常只要2-3个月,通过Internet的宝藏(互动式教程,书,文档和开源代码库)一切皆有可能。
另外一个重要的考虑因素是,项目使用Python会更简单,它不会像其他项目那样需要那么多的开发者。在谬误6和谬误9中提到的那样,在Python项目中,学习像Instagram那样的高效团队是一个常见的比喻,并且这确实是我们在eBay和PayPal的经验。
Myth #10: Python不适应于大项目
Myth #7 讨论了大规模运行Python的项目,但开发Python大规模项目是什么情况呢?正如在Myth #9中提到的,大多数Python不被人看好。 然而Instagram在其被亿元美金收购当天达到千万的点击量,而整个公司只有十几个人。Dropbox在2011年只有70个工程师,其他团队更少。所以,Python适合大规模团队吗?
美国银行实际上有超过5000的Python开发者,一个单独的项目超过一千万行Python代码。JP摩根也经历了类似的转变。YouTube也有数千的开发者和数百万行的代码。大规模产品和团队每天都在使用Python,因为它具有良好的模块化和封装特性,在特定方面许多的大规模开发建议是一致的。工具,强大的惯例以及代码审查促使了项目规模化管理的现实。
幸运的是,Python发展于上面所提到的好的奠基。我们在检查执行使用pyflakes以及其他工具进行Python代码的静态分析,正如坚持PEP8——Python语言的基础风格指南。
最后,应该指出的是,除了调度加速Myth #6以及#7中所提到的,使用Python的项目通常需要更少的开发者。我们常见的成功案例中,使用Java或C++的项目通常有3-5开发者耗时2-6个月,最终由单一的开发者在2-6周(或小时,因为这些原因)完成...