中企动力 > 头条 > python中的index

网站性能检测评分

注:本网站页面html检测工具扫描网站中存在的基本问题,仅供参考。

python中的index

在Python 2.7即将停止支持时,我们为你准备了一份3.x迁移指南 行业视频课程

img

wawa

关注

机器之心编译

目前,Python 科学栈中的所有主要项目都同时支持 Python 3.x 和 Python 2.7,不过,这种情况很快即将结束。去年 11 月,Numpy 团队的一份声明引发了数据科学社区的关注:这一科学计算库即将放弃对于 Python 2.7 的支持,全面转向 Python 3。Numpy 并不是唯一宣称即将放弃 Python 旧版本支持的工具,pandas 与 Jupyter notebook 等很多产品也在即将放弃支持的名单之中。对于数据科学开发者而言,如何将已有项目从 Python 2 转向 Python 3 成为了正在面临的重大问题。来自莫斯科大学的 Alex Rogozhnikov 博士为我们整理了一份代码迁移指南。

Python 3 功能简介

Python 是机器学习和其他科学领域中的主流语言,我们通常需要使用它处理大量的数据。Python 兼容多种深度学习框架,且具备很多优秀的工具来执行数据预处理和可视化。

但是,Python 2 和 Python 3 长期共存于 Python 生态系统中,很多数据科学家仍然使用 Python 2。2019 年底,Numpy 等很多科学计算工具都将停止支持 Python 2,而 2018 年后 Numpy 的所有新功能版本将只支持 Python 3。

为了使 Python 2 向 Python 3 的转换更加轻松,我收集了一些 Python 3 的功能,希望对大家有用。

使用 pathlib 更好地处理路径

pathlib 是 Python 3 的默认模块,帮助避免使用大量的 os.path.joins:

from pathlib importPath

dataset ='wiki_images'

datasets_root =Path('/path/to/datasets/')

train_path = datasets_root / dataset /'train'

test_path = datasets_root / dataset /'test'

for image_path in train_path.iterdir():

with image_path.open()as f:# note, open is a method of Path object

# do something with an image

Python 2 总是试图使用字符串级联(准确,但不好),现在有了 pathlib,代码安全、准确、可读性强。

此外,pathlib.Path 具备大量方法,这样 Python 新用户就不用每个方法都去搜索了:

p.exists()

p.is_dir()

p.parts()

p.with_name('sibling.png')# only change the name, but keep the folder

p.with_suffix('.jpg')# only change the extension, but keep the folder and the name

p.chmod(mode)

p.rmdir()

pathlib 会节约大量时间,详见:

文档:https://docs.python.org/3/library/pathlib.html;

参考信息:https://pymotw/3/pathlib/。

类型提示(Type hinting)成为语言的一部分

PyCharm 中的类型提示示例:

Python 不只是适合脚本的语言,现在的数据流程还包括大量步骤,每一步都包括不同的框架(有时也包括不同的逻辑)。

类型提示被引入 Python,以帮助处理越来越复杂的项目,使机器可以更好地进行代码验证。而之前需要不同的模块使用自定义方式在文档字符串中指定类型(注意:PyCharm 可以将旧的文档字符串转换成新的类型提示)。

下列代码是一个简单示例,可以处理不同类型的数据(这就是我们喜欢 Python 数据栈之处)。

def repeat_each_entry(data):

""" Each entry in the data is doubled

"""

index = numpy.repeat(numpy.arange(len(data)),2)

return data[index]

上述代码适用于 numpy.array(包括多维)、astropy.Table 和 astropy.Column、bcolz、cupy、mxnet.ndarray 等。

该代码同样可用于 pandas.Series,但是方式是错误的:

repeat_each_entry(pandas.Series(data=[0,1,2], index=[3,4,5]))# returns Series with Nones inside

这是一个两行代码。想象一下复杂系统的行为多么难预测,有时一个函数就可能导致错误的行为。明确了解哪些类型方法适合大型系统很有帮助,它会在函数未得到此类参数时给出提醒。

def repeat_each_entry(data:Union[numpy.ndarray, bcolz.carray]):

如果你有一个很棒的代码库,类型提示工具如 MyPy 可能成为集成流程中的一部分。不幸的是,提示没有强大到足以为 ndarrays/tensors 提供细粒度类型,但是或许我们很快就可以拥有这样的提示工具了,这将是 DS 的伟大功能。

类型提示 → 运行时的类型检查

默认情况下,函数注释不会影响代码的运行,不过它也只能帮你指出代码的意图。

但是,你可以在运行时中使用 enforce 等工具强制进行类型检查,这可以帮助你调试代码(很多情况下类型提示不起作用)。

@enforce.runtime_validation

def foo(text: str)->None:

print(text)

foo('Hi')# ok

foo(5)# fails

@enforce.runtime_validation

def any2(x:List[bool])->bool:

return any(x)

any ([False,False,True,False])# True

any2([False,False,True,False])# True

any (['False'])# True

any2(['False'])# fails

any ([False,None,"",0])# False

any2([False,None,"",0])# fails

函数注释的其他用处

如前所述,注释不会影响代码执行,而且会提供一些元信息,你可以随意使用。

例如,计量单位是科学界的一个普遍难题,astropy 包提供一个简单的装饰器(Decorator)来控制输入量的计量单位,并将输出转换成所需单位。

# Python 3

from astropy import units as u

@u.quantity_input()

def frequency(speed: u.meter / u.s, wavelength: u.m)->u.terahertz:

return speed / wavelength

frequency(speed=300_000 * u.km / u.s, wavelength=555* u.nm)

# output: 540.5405405405404 THz, frequency of green visible light

如果你拥有 Python 表格式科学数据(不必要太多),你应该尝试一下 astropy。你还可以定义针对某个应用的装饰器,用同样的方式来控制/转换输入和输出。

通过 @ 实现矩阵乘法

下面,我们实现一个最简单的机器学习模型,即带 L2 正则化的线性回归:

# l2-regularized linear regression: || AX - b ||^2 + alpha * ||x||^2 ->min

# Python 2

X = np.linalg.inv(np.dot(A.T, A)+ alpha * np.eye(A.shape[1])).dot(A.T.dot(b))

# Python 3

X = np.linalg.inv(A.T @ A + alpha * np.eye(A.shape[1]))@(A.T @ b)

下面 Python 3 带有 @ 作为矩阵乘法的符号更具有可读性,且更容易在深度学习框架中转译:因为一些如 X @ W + b[None, :] 的代码在 numpy、cupy、pytorch 和 tensorflow 等不同库下都表示单层感知机。

使用 ** 作为通配符

递归文件夹的通配符在 Python2 中并不是很方便,因此才存在定制的 glob2 模块来克服这个问题。递归 flag 在 Python 3.6 中得到了支持。

import glob

# Python 2

found_images = \

glob.glob('/path*.jpg') \

+ glob.glob('/path*.jpg') \

+ glob.glob('/path***.jpg')

# Python 3

found_images = glob.glob('/path*.jpg', recursive=True)

python3 中更好的选择是使用 pathlib:

# Python 3

found_images = pathlib.Path('/path/').glob('**/*.jpg')

Print 在 Python3 中是函数

Python 3 中使用 Print 需要加上麻烦的圆括弧,但它还是有一些优点。

使用文件描述符的简单句法:

print>>sys.stderr,"critical error"# Python 2

print("critical error", file=sys.stderr)# Python 3

在不使用 str.join 下输出 tab-aligned 表格:

# Python 3

print(*array, sep='\t')

print(batch, epoch, loss, accuracy, time, sep='\t')

修改与重新定义 print 函数的输出:

# Python 3

_print =print# store the original print function

defprint(*args,**kargs):

pass# do something useful, e.g. store output to some file

在 Jupyter 中,非常好的一点是记录每一个输出到独立的文档,并在出现错误的时候追踪出现问题的文档,所以我们现在可以重写 print 函数了。

在下面的代码中,我们可以使用上下文管理器暂时重写 print 函数的行为:

@contextlib.contextmanager

def replace_print():

import builtins

_print =print# saving old print function

# or use some other function here

builtins.print=lambda*args,**kwargs: _print('new printing',*args,**kwargs)

yield

builtins.print= _print

with replace_print():

上面并不是一个推荐的方法,因为它会引起系统的不稳定。

print 函数可以加入列表解析和其它语言构建结构。

# Python 3

result = process(x)if is_valid(x)elseprint('invalid item: ', x)

f-strings 可作为简单和可靠的格式化

默认的格式化系统提供了一些灵活性,且在数据实验中不是必须的。但这样的代码对于任何修改要么太冗长,要么就会变得很零碎。而代表性的数据科学需要以固定的格式迭代地输出一些日志信息,通常需要使用的代码如下:

# Python 2

print('{batch:3} {epoch:3} / {total_epochs:3} accuracy: {acc_mean:0.4f}±{acc_std:0.4f} time: {avg_time:3.2f}'.format(

batch=batch, epoch=epoch, total_epochs=total_epochs,

acc_mean=numpy.mean(accuracies), acc_std=numpy.std(accuracies),

avg_time=time / len(data_batch)

))

# Python 2 (too error-prone during fast modifications, please avoid):

print('{:3} {:3} / {:3} accuracy: {:0.4f}±{:0.4f} time: {:3.2f}'.format(

batch, epoch, total_epochs, numpy.mean(accuracies), numpy.std(accuracies),

time / len(data_batch)

))

样本输出:

12012/300 accuracy:0.8180±0.4649 time:56.60

f-strings 即格式化字符串在 Python 3.6 中被引入:

# Python 3.6+

print(f'{batch:3} {epoch:3} / {total_epochs:3} accuracy: {numpy.mean(accuracies):0.4f}±{numpy.std(accuracies):0.4f} time: {time / len(data_batch):3.2f}')

另外,写查询语句时非常方便:

query = f"INSERT INTO STATION VALUES (13, '{city}', '{state}', {latitude}, {longitude})"

「true pision」和「integer pision」之间的明显区别

对于数据科学来说这种改变带来了便利(但我相信对于系统编程来说不是)。

data = pandas.read_csv('timing.csv')

velocity = data['distance']/ data['time']

Python 2 中的结果依赖于『时间』和『距离』(例如,以米和秒为单位)是否被保存为整数。

在 Python 3 中,结果的表示都是精确的,因为除法的结果是浮点数。

另一个案例是整数除法,现在已经作为明确的运算:

n_gifts = money // gift_price # correct for int and float arguments

注意,该运算可以应用到内建类型和由数据包(例如,numpy 或 pandas)提供的自定义类型。

严格排序

# All these comparisons are illegal in Python 3

3<'3'

2

(3,4)<(3,None)

(4,5)<[4,5]

# False in both Python 2 and Python 3

(4,5)==[4,5]

防止不同类型实例的偶然性的排序。

sorted([2,'1',3])# invalid for Python 3, in Python 2 returns [2, 3, '1']

在处理原始数据时帮助发现存在的问题。

旁注:对 None 的合适检查是(两个版本的 Python 都适用):

if a isnotNone:

pass

if a:# WRONG check for None

pass

自然语言处理的 Unicode

s ='您好'

print(len(s))

print(s[:2])

输出:

Python 2: 6\n

Python 3: 2\n 您好.

x = u'со'

x +='co'# ok

x +='со'# fail

Python 2 在此失败了,而 Python 3 可以如期工作(因为我在字符串中使用了俄文字母)。

在 Python 3 中 strs 是 Unicode 字符串,对非英语文本的 NLP 处理更加方便。

还有其它有趣的方面,例如:

'a'< type < u'a'# Python 2: True

'a'< u'a'# Python 2: False

from collections importCounter

Counter('Mbelstück')

Python 2: Counter({'\xc3': 2, 'b': 1, 'e': 1, 'c': 1, 'k': 1, 'M': 1, 'l': 1, 's': 1, 't': 1, '\xb6': 1, '\xbc': 1})

Python 3: Counter({'M': 1, '': 1, 'b': 1, 'e': 1, 'l': 1, 's': 1, 't': 1, 'ü': 1, 'c': 1, 'k': 1})

这些在 Python 2 里也能正确地工作,但 Python 3 更为友好。

保留词典和**kwargs 的顺序

在 CPython 3.6+ 版本中,字典的默认行为类似于 OrderedDict(在 3.7+版本中已得到保证)。这在字典理解(和其他操作如 json 序列化/反序列化期间)保持顺序。

import json

x ={str(i):i for i in range(5)}

json.loads(json.dumps(x))

# Python 2

{u'1':1, u'0':0, u'3':3, u'2':2, u'4':4}

# Python 3

{'0':0,'1':1,'2':2,'3':3,'4':4}

它同样适用于**kwargs(在 Python 3.6+版本中):它们的顺序就像参数中显示的那样。当设计数据流程时,顺序至关重要,以前,我们必须以这样繁琐的方式来编写:

from torch import nn

# Python 2

model = nn.Sequential(OrderedDict([

('conv1', nn.Conv2d(1,20,5)),

('relu1', nn.ReLU()),

('conv2', nn.Conv2d(20,64,5)),

('relu2', nn.ReLU())

]))

# Python 3.6+, how it *can* be done, not supported right now in pytorch

model = nn.Sequential(

conv1=nn.Conv2d(1,20,5),

relu1=nn.ReLU(),

conv2=nn.Conv2d(20,64,5),

relu2=nn.ReLU())

)

注意到了吗?名称的唯一性也会被自动检查。

迭代地拆封

# handy when amount of additional stored info may vary between experiments, but the same code can be used in all cases

model_paramteres, optimizer_parameters,*other_params = load(checkpoint_name)

# picking two last values from a sequence

*prev, next_to_last, last = values_history

# This also works with any iterables, so if you have a function that yields e.g. qualities,

# below is a simple way to take only last two values from a list

*prev, next_to_last, last = iter_train(args)

默认的 pickle 引擎为数组提供更好的压缩

# Python 2

import cPickle as pickle

import numpy

print len(pickle.dumps(numpy.random.normal(size=[1000,1000])))

# result: 23691675

# Python 3

import pickle

import numpy

len(pickle.dumps(numpy.random.normal(size=[1000,1000])))

# result: 8000162

节省 3 倍空间,而且速度更快。实际上,类似的压缩(不过与速度无关)可以通过 protocol=2 参数来实现,但是用户...

Python基础学习之常用六大数据类型 互联网视频课程

img

Tia

关注

刚开始学习一门编程语言,除了了解运行环境与语言类型之外,最基本还是从该语言的基本数据类型开始学起。

Python六大常用数据类型:

int 整数 float 浮点数 str 字符串 list 列表 tuple 元组 dict 字典

讲解这些先说一下python中的变量与变量名。

变量其实本质上是一个具有特殊格式的内存,变量名则是指向这个内存的别名。python中的变量不需要声明,所有的变量必须赋值了才能使用。赋值的步骤:

a = 100

第一步:准备好值100第二部:准备好变量名a第三部:将值与名字进行关联

一、整数python将其他一些静态语言中的int、long,也就是整型和长整型合并为了一个。python中的int是边长的,也就是说可以存储无限大的整数,但是这是不现实的,因为没有这么多的内存够分配。整型不仅支持十进制,还支持二进制、八进制、十六进制。可以通过下面的方式来互相转换:

print(bin(20)) #转换二进制print(oct(20)) #转换八进制print(hex(20)) #转换十六进制

二、浮点型浮点数也就是小数,如22.1,44.2,也可以使用科学计数法,比如:1.22e8。python支持对整数和浮点数直接进行四则混合运算。整数运算结果仍然是整数,浮点数运算结果仍然是浮点数,但整数和浮点数混合运算的结果就变成浮点数了。

a = 1b = 1.1print(type(a+b)) #

三、字符串字符串在任何编程语言中都是最常用的数据类型。字符串的创建很简单,也是上面所说的三步,但是要加上单引号或者双引号。

a = "hello python"

也可以使用 “”" 创建多行字符串:

a = """ hello python"""

字符串可以通过下面方式进行截取或者连接:

print (str[0:4]) 输出第一个到倒数第四个的所有字符 print (str[0]) 输出单字符 第1个字符print (str[3:]) 输出从第四个开始之后的所有字符print (str * 2) 输出字符串两次print (str + "bbbb") 连接字符串

字符串常用函数:str.strip() 消除字符串s左右两边的空白字符(包括’\t’,’\n’,’\r’,’’)len(str) 获取字符串长度str.upper() 转换为大写str.lower() 转换为小写str.title() 每个单词首字母大写str.capitalize() 首字母大写字符串翻转:

a = 'abcde'print(a[::-1])

字符串分割:

a = 'hello,python'print(a.split(',')) #['hello', 'python'] 返回一个列表

相对应的还有一个将列表元素连接成字符串:

a = ['hello', 'python']str = '-'print(str.join(a)) # hello-python

四、列表列表的写法是一个方括号内的值用逗号分隔。比如上面的[‘hello’, ‘python’]。列表的数据项不需要具有相同的类型,列表中的每个元素都分配一个数字索引,第一个索引是0,第二个索引是1,依此类推。访问列表中的值可以通过下面的方式:

list1 = [1, 2, 3, 4, 5, 6]print(list1[2])

同样可以通过索引截取

print ("list1[2:5]: ", list1[2:5])

列表常用操作:list1.append(‘7’) 追加一个元素在末尾,每次只能添加一个len(list1) 返回列表元素个数max(list1) 返回列表元素最大值min(list1) 返回列表元素最小值list1.count(obj) 统计某个元素在列表中出现的次数list1.index(obj) 从列表中找出某个值第一个匹配项的索引位置list1.reverse() 反向列表中元素list1.clear() 清空列表list1.extend(seq) 在列表末尾一次性追加另一个序列中的多个值,也就是扩充了列表 append与extend的区别:

A = ['a', 'b', 'c']A.append(['d', 'e'])print(A) # ['a', 'b', 'c', ['d', 'e']]B = ['a', 'b', 'c']B.extend(['d', 'e'])print(B) # ['a', 'b', 'c', 'd', 'e']

extend方法只能接收list类型,它是把这个列表中的每个元素添加到原list中。append可以接收任意类型,追加到原list的末尾。

五、元组元组的创建也很简单,和list类似,只是把’[]‘换成了’()’。

tup1 = ('hello', 'python')

元组中只有一个元素的时候要注意:

tup2 = (10)tup3 = ('a')print(type(tup2)) #print(type(tup3)) #

因为这样会被解释器当做运算符,所以正确的方法是在第一个元素后面添加逗号。

tup4 = ('a',)print(type(tup4)) #

元组同样可以使用下标索引来访问元组中的值:

tup5 = ('hello', 'python', 'hello', 'word')print(tup5[1]) #pythonprint(tup5[1:3]) #('python', 'hello')

注意:元组是不可以被修改的。

tup6 = ('hello', 'python', 'hello', 'word')tup6[2] = 'aaa'

上面会出现一个异常: TypeError: ‘tuple’ object does not support item assignment.但是元组中如果包含了一个列表,那么这个列表是可以被修改的。

tup7 = ('hello', 'python', 'hello', 'word', ['aa', 'bb', 'cc'])tup7[-1][1] = 'ddd'print(tup7) # ('hello', 'python', 'hello', 'word', ['aa', 'ddd', 'cc'])

元组运算符:len(tup) 计算元素个数tup1 + tup2 连接生成新元组tup * 4 元组复制num in tup 元素是否存在,返回True/False

六、字典python中的字典就是key,value的形式。使用大括号包含起来。字典中的成员的键是唯一的,如果出现多个同名的键,那么写在后面覆盖前面的值。形式如下:

dict1 = {'a' : 1, 'b' : 2}

字典的常用操作最基本的也就是增删改查:获取:直接通过键来获取。

dict['b'] # 2

dict.keys() 获取字典中所有的键dict.values() 获取字典中的所有的值增加:

dict1['c'] = 3 #{'a': 1, 'b': 2, 'c': 3} #如果键存在则更新对应的值

修改:直接给键进行再次赋值就可以修改键对应的值了。如果键不存在,则变成添加成员。还可以通过:

dict1.update({"a":"11"})dict1.setdefault("a", "222") # 已存在的键则修改无效dict1.setdefault("d","222") # 不存在的话则创建dict1.setdefault("e") # 没有设置值为None

删除:使用pop删除指定键对应的成员,同时返回该值

print(dict1) # {'a': '11', 'b': 2, 'c': 3, 'd': '222', 'e': None}print(dict1.pop("a")) # aprint(dict1) # {'b': 2, 'c': 3, 'd': '222', 'e': None}#在不设置默认值的情况下,使用pop删除不存在的键,会报错。print(dict1.pop("f")) # 报错 KeyError: 'f'

如果设置了默认值, print(dict1.pop(“f”, None)),则不会报错,返回这个默认值。判断是否删除成功可以通过下面方式来判断:

if dict1.pop("f", None) == None: print('键不存在')else: print('删除成功')

以上则是python中最基本的数据类型以及用法,当然还有其他的数据类型,作者暂时只列举了这些。

更过python文章,关注作者哦!干货多多!!

Python学习之路Django之ModelForm,快速理解入门及注意点(附源码) 营销视频课程

img

韶颖

关注

一、ModelForm

自己定义的form--->Form--->BaseForm

自己定义的ModelForm--->ModelForm--->BaseModelForm--->BaseForm

从上面可以看出form和ModelForm都是继承BaseForm,所以在Form中有的方法在ModelForm中也是有的,包括is_valid(),cleaned_data,errors

下面是ModelForm的中Meta的使用方法

下面是关于Meta重要参数的使用的例子:

views.py中的代码为:

前端index.html中代码如下:

这样默认访问index页面效果如下:

关于labels参数

可以看出默认情况下输入框左边的lable显示的是列名,如果不在models.py的类中定义字段时添加verbose_name="用户名"参数,默认则是显示的列名,当然如果通过verbose_name="用户名"参数设定,则可以显示自定义的名字,当然这里如果不在models.py中定义的话,可以在ModelForm中通过lables参数指定,注意:lables后面的参数值是字典类型,代码如下:

这样当再次访问页面时效果如下:

关于help_texts参数

注意:help_texts后面的参数值是字典类型代码如下:

这样当再次访问页面时:

关于wigets参数

Modelform本身没有widgets,需要借助于forms,所以当在ModelForm中需要通过widgets参数自定义插件的时候,需要from django.forms import widgets as MFwidgets 这里通过as 将名字进行改变是因为和widgets参数冲突,注意:help_texts后面的参数值是字典类型,具体用法例子如下:

这样当再次访问页面时:

关于error_messages参数

error_messages用于自定义错误信息,注意:error_messages后面的参数值是字典类型,具体使用例子如下:

默认当点击页面提交时,页面的错误信息如下:

通过error_messages用于自定义错误信息后的代码如下:

这样当再次提交的时候,错误信息效果如下:

关于field_classes参数

在model.py的类中我们已经对字段类型进行了设置,当我们想在ModelForm中对字段类型进行修改的时候,首先需要导入from django.forms import fields as MFfields 这里通过通过as 改名防止冲突,注意:field_classes后面的参数值是字典类型,代码例子如下:

上述代码例子中将原本为email邮箱格式的字段更改为了URL字段

以上是关于生成html的用法,下面ModelForm在其他方面也可以方便

二、ModelForm对于数据库的操作

对多的数据的保存

我们将上述页面还原为如下:

我们需要实现的是当用户淑如用户名和邮箱以及选择用户类型后,点击提交后,将信息保存到数据库,并且这里实现了一对多数据库的数据的保存,我们需要将views.py中的index函数的代码进行更改:

这里用的是obj.save()方法,这样当页面信息正确后,点击提交就会将数据保存到数据库中

多对多数据的保存

在上面演示了通过obj.save()可以保存一对多的数据到数据库,同样的,也是可以将多对多数据保存到数据库

现在models.py文件中添加一个用户组的类,并创建多对多关系,修改后的代码如下:

这样页面显示效果如下:

这样当我们填写信息点击提交后,数据库中也就将数据保存在多对多关系

对obj.save()方法的详解

我们点击代码中obj后面的save,查看源码如下:

分析源码我们可以看出,默认参数commit=True,代码中if commit判断中,如果为commit=True,则执行self.instance.save()和self._save_m2m()

self.instance:为当前model的对象,所以可以保存当前表

Self._save_m2m():则表示保存多对多的数据

所以默认情况下commit=True,则当前表数据和多对多表的数据都会保存,当然在这里我们也可以进行拆分,如果commit=False,这个时候,else里只有self.save_m2m=self._save_m2m,进行了赋值,并没有执行任何操作,最终返回self.instance,下面演示拆开的代码例子:

修改后views.py中index函数:

这里instance=obj.save(False),instance.save()这样如果提交数据,就不会保存多对多表的数据,只保存当前表的数据,如果想要保存多对多的数据,则再添加obj.save_m2m()

所以这里我们可以看出

instance=obj.save(False)

instance.save()

obj.save_m2m()

就相当于obj.save()

关于select_related的一个知识点

当在页面中想要列出所有用户时:

Views.py中添加如下代码:

这里有个问题需要注意,这里用select_related时后面只能填写一对多的表跨表,不能填写多对多表进行跨表。

下面是对ModelForm使用的一个小例子:

Views.py中的代码为:

ModelForm.py中的代码为:

两个前端页面,user_edit.html和user_list.html

User_list.html代码如下:

user_edit.html代码如下:

当登陆用户列表页面时:

点击编辑:

上述代码中有几个重要的地方:

当点击编辑的时候,编辑页面会将点击的当前行的用户信息显示出来。

Views.py代码中,当用户通过get访问页面时,

mf= ModelForm.UserInfoModelForm(instance=user_obj)

这里通过instance参数将用户对象传入到ModelForm中,从而显示将当前行的用户信息显示到form页面。

当用户更改用户信息后,点击提交,则可以将更改的用户信息保存到数据库中

mf = ModelForm.UserInfoModelForm(request.POST,instance=user_obj)

这里首先传入request.POST参数,这里是将用户的信息提交,而将用户信息提交到数据库中哪一行,则需要通过instance参数将用户对象user_obj传入,这样当用户更改用户信息后,点击提交则可以将更改后的用户信息保存到数据库中相应的行,如果没有instance参数,则会创建一条新的数据在数据库中

注意:代码中用的is_valid() 这里同样和Form一样预留有钩子:

_clean_fields()

_clean_from()

_post_clean()

注意:在ModelForm中可以定义额外的字段

ModelForm小结:

1、生成HTML标签:在ModelForm类中的class Meta中定义

2、Mf =xxxModelForm(instance=Modelobj)

3、额外的标签

4、和Form中存在的验证,预留的钩子

_clean_fields()

_clean_from()

_post_clean()

5、mf.save()保存数据

通过传入False参数将mf.save()进行分开

Instance = mf.save(False)

Instance.save()

Mf.save_m2m()。

入门|数据科学初学者必知的NumPy基础知识 推广视频课程

img

雷冷荷

关注

本文介绍了一些 NumPy 基础知识,适合数据科学初学者学习掌握。

NumPy(Numerical Python)是 Python 中的一个线性代数库。对每一个数据科学或机器学习 Python 包而言,这都是一个非常重要的库,SciPy(Scientific Python)、Mat-plotlib(plotting library)、Scikit-learn 等都在一定程度上依赖 NumPy。

对数组执行数学运算和逻辑运算时,NumPy 是非常有用的。在用 Python 对 n 维数组和矩阵进行运算时,NumPy 提供了大量有用特征。

这篇教程介绍了数据科学初学者需要了解的 NumPy 基础知识,包括如何创建 NumPy 数组、如何使用 NumPy 中的广播机制、如何获取值以及如何操作数组。更重要的是,大家可以通过本文了解到 NumPy 在 Python 列表中的优势:更简洁、更快速地读写项、更方便、更高效。

本教程将使用 Jupyter notebook 作为编辑器。

让我们开始吧!

安装 NumPy

如果你已经装有 Anaconda,那么你可以使用以下命令通过终端或命令提示符安装 NumPy:

conda install numpy

如果你没有 Anaconda,那么你可以使用以下命令从终端上安装 NumPy:

pip install numpy

安装好 NumPy 后,你就可以启动 Jupyter notebook 开始学习了。接下来从 NumPy 数组开始。

NumPy 数组

NumPy 数组是包含相同类型值的网格。NumPy 数组有两种形式:向量和矩阵。严格地讲,向量是一维数组,矩阵是多维数组。在某些情况下,矩阵只有一行或一列。

首先将 NumPy 导入 Jupyter notebook:

import numpy as np

从 Python 列表中创建 NumPy 数组

我们先创建一个 Python 列表:

my_list = [1, 2, 3, 4, 5]

通过这个列表,我们可以简单地创建一个名为 my_numpy_list 的 NumPy 数组,显示结果:

my_numpy_list = np.array(my_list)my_numpy_list #This line show the result of the array generated

刚才我们将一个 Python 列表转换成一维数组。要想得到二维数组,我们要创建一个元素为列表的列表,如下所示:

second_list = [[1,2,3], [5,4,1], [3,6,7]]new_2d_arr = np.array(second_list)new_2d_arr #This line show the result of the array generated

我们已经成功创建了一个有 3 行 3 列的二维数组。

使用 arange() 内置函数创建 NumPy 数组

与 Python 的 range() 内置函数相似,我们可以用 arange() 创建一个 NumPy 数组。

my_list = np.arange(10)#ORmy_list = np.arange(0,10)

这产生了 0~10 的十个数字。

要注意的是 arange() 函数中有三个参数。第三个参数表示步长。例如,要得到 0~10 中的偶数,只需要将步长设置为 2 就可以了,如下所示:

my_list = np.arange(0,11,2)

还可以创建有 7 个 0 的一维数组:

my_zeros = np.zeros(7)

也可以创建有 5 个 1 的一维数组:

my_ones = np.ones(5)

同样,我们可以生成内容都为 0 的 3 行 5 列二维数组:

two_d = np.zeros((3,5))

使用 linspace() 内置函数创建 NumPy 数组

linspace() 函数返回的数字都具有指定的间隔。也就是说,如果我们想要 1 到 3 中间隔相等的 15 个点,我们只需使用以下命令:

lin_arr = np.linspace(1, 3, 15)

该命令可生成一维向量。

与 arange() 函数不同,linspace() 的第三个参数是要创建的数据点数量。

在 NumPy 中创建一个恒等矩阵

处理线性代数时,恒等矩阵是非常有用的。一般而言,恒等矩阵是一个二维方矩阵,也就是说在这个矩阵中列数与行数相等。有一点要注意的是,恒等矩阵的对角线都是 1,其他的都是 0。恒等矩阵一般只有一个参数,下述命令说明了要如何创建恒等矩阵:

my_matrx = np.eye(6) #6 is the number of columns/rows you want

用 NumPy 创建一个随机数组成的数组

我们可以使用 rand()、randn() 或 randint() 函数生成一个随机数组成的数组。

使用 random.rand(),我们可以生成一个从 0~1 均匀产生的随机数组成的数组。

例如,如果想要一个由 4 个对象组成的一维数组,且这 4 个对象均匀分布在 0~1,可以这样做:

my_rand = np.random.rand(4)

如果我们想要一个有 5 行 4 列的二维数组,则:

my_rand = np.random.rand(5, 4)my_rand

使用 randn(),我们可以从以 0 为中心的标准正态分布或高斯分布中产生随机样本。例如,我们这样生成 7 个随机数:

my_randn = np.random.randn(7)my_randn

绘制结果后会得到一个正态分布曲线。

同样地,如需创建一个 3 行 5 列的二维数组,这样做即可:

np.random.randn(3,5)

最后,我们可以使用 randint() 函数生成整数数组。randint() 函数最多可以有三个参数:最小值(包含),最大值(不包含)以及数组的大小。

np.random.randint(20) #generates a random integer exclusive of 20np.random.randint(2, 20) #generates a random integer including 2 but excluding 20np.random.randint(2, 20, 7) #generates 7 random integers including 2 but excluding 20

将一维数组转换成二维数组

先创建一个有 25 个随机整数的一维数组:

arr = np.random.rand(25)

然后使用 reshape() 函数将其转换为二维数组:

arr.reshape(5,5)

注意:reshape() 仅可转换成行列数目相等,且行列数相乘后要与元素数量相等。上例中的 arr 包含 25 个元素,因此只能重塑为 5*5 的矩阵。

定位 NumPy 数组中的最大值和最小值

使用 max() 和 min() 函数,我们可以得到数组中的最大值或最小值:

arr_2 = np.random.randint(0, 20, 10)arr_2.max() #This gives the highest value in the arrayarr_2.min() #This gives the lowest value in the array

使用 argmax() 和 argmin() 函数,我们可以定位数组中最大值和最小值的索引:

arr_2.argmax() #This shows the index of the highest value in the array arr_2.argmin() #This shows the index of the lowest value in the array

假设存在大量数组,而你需要弄清楚数组的形态,你想知道这个数组是一维数组还是二维数组,只需要使用 shape 函数即可:

arr.shape

从 NumPy 数组中索引/选择多个元素(组)

在 NumPy 数组中进行索引与 Python 类似,只需输入想要的索引即可:

my_array = np.arange(0,11)my_array[8] #This gives us the value of element at index 8

为了获得数组中的一系列值,我们可以使用切片符「:」,就像在 Python 中一样:

my_array[2:6] #This returns everything from index 2 to 6(exclusive)my_array[:6] #This returns everything from index 0 to 6(exclusive)my_array[5:] #This returns everything from index 5 to the end of the array.

类似地,我们也可以通过使用 [ ][ ] 或 [,] 在二维数组中选择元素。

使用 [ ][ ] 从下面的二维数组中抓取出值「60」:

two_d_arr = np.array([[10,20,30], [40,50,60], [70,80,90]])two_d_arr[1][2] #The value 60 appears is in row index 1, and column index 2

使用 [,] 从上面的二维数组中抓取出值「20」:

two_d_arr[0,1]

也可以用切片符抓取二维数组的子部分。使用下面的操作从数组中抓取一些元素:

two_d_arr[:1, :2] # This returns [[10, 20]]two_d_arr[:2, 1:] # This returns ([[20, 30], [50, 60]])two_d_arr[:2, :2] #This returns ([[10, 20], [40, 50]])

我们还可以索引一整行或一整列。只需使用索引数字即可抓取任意一行:

two_d_arr[0] #This grabs row 0 of the array ([10, 20, 30])two_d_arr[:2] #This grabs everything before row 2 ([[10, 20, 30], [40, 50, 60]])

还可以使用 &、|、<、> 和 == 运算符对数组执行条件选择和逻辑选择,从而对比数组中的值和给定值:

new_arr = np.arange(5,15)new_arr > 10 #This returns TRUE where the elements are greater than 10 [False, False, False, False, False, False, True, True, True, True]

现在我们可以输出符合上述条件的元素:

bool_arr = new_arr > 10new_arr[bool_arr] #This returns elements greater than 10 [11, 12, 13, 14]new_arr[new_arr>10] #A shorter way to do what we have just done

组合使用条件运算符和逻辑运算符,我们可以得到值大于 6 小于 10 的元素:

new_arr[(new_arr>6) & (new_arr<10)]

预期结果为:([7, 8, 9])

广播机制

广播机制是一种快速改变 NumPy 数组中的值的方式。

my_array[0:3] = 50#Result is:[50, 50, 50, 3, 4, 5, 6, 7, 8, 9, 10]

在这个例子中,我们将索引为 0 到 3 的元素的初始值改为 50。

对 NumPy 数组执行数学运算

arr = np.arange(1,11)arr * arr #Multiplies each element by itselfarr - arr #Subtracts each element from itselfarr + arr #Adds each element to itselfarr / arr #Divides each element by itself

我们还可以对数组执行标量运算,NumPy 通过广播机制使其成为可能:

arr + 50 #This adds 50 to every element in that array

NumPy 还允许在数组上执行通用函数,如平方根函数、指数函数和三角函数等。

np.sqrt(arr) #Returns the square root of each elementnp.exp(arr) #Returns the exponentials of each elementnp.sin(arr) #Returns the sin of each elementnp.cos(arr) #Returns the cosine of each elementnp.log(arr) #Returns the logarithm of each elementnp.sum(arr) #Returns the sum total of elements in the arraynp.std(arr) #Returns the standard deviation of in the array

我们还可以在二维数组中抓取行或列的总和:

mat = np.arange(1,26).reshape(5,5)mat.sum() #Returns the sum of all the values in matmat.sum(axis=0) #Returns the sum of all the columns in matmat.sum(axis=1) #Returns the sum of all the rows in mat

现在,这篇 NumPy 教程进入了尾声!希望对大家有所帮助。

Python程序员最常犯的10个错误,你中招了吗? 公司视频课程

img

Guy

关注

大数据文摘作品

编译:什锦甜、Gao Ning、小鱼

Python简介

Python是一种具有动态语义的、面向对象的解释型高级编程语言。因其内置了高级数据结构,并支持动态类型和动态绑定,使用Python进行快速应用程序开发十分便利。同时作为一门脚本语言,它兼容部分现有的组件和服务。Python还支持模块和各种库的扩展,有助于实现模块化编程和提高代码复用率。

关于本文

刚接触这门语言的新手可能会对Python简洁灵活的语法有些不适应,或是低估了Python强大的性能。鉴于此,本文列出了Python开发人员常犯的10个小错误,资深程序猿也难免会中招哦。

本文供Python高级开发人员参考,Python小白可以参考下面这篇文章:

http://onlamp/pub/a/python/2004/02/05/learn_python.html

常见错误1:滥用表达式作为函数参数的默认值

Python允许开发者指定函数参数的默认值,这也是Python的一大特色,但当默认值可变时,可能会给开发者带来一些困扰。例如下面定义的函数:

>>> def foo(bar=[]): # bar is optional and defaults to [] if not specified... bar.append("baz") # but this line could be problematic, as we'll see...... return bar

看出bug了吗?那就是在每次调用函数前没有对可变参数进行赋值,而认为该参数就是默认值。比如上面的代码,有人可能期望在反复调用foo()时返回'baz',以为每次调用foo()时,bar的值都为[],即一个空列表。

但是,让我们来看看代码运行结果:

>>> foo()["baz"]>>> foo()["baz", "baz"]>>> foo()["baz", "baz", "baz"]

嗯?为什么每次调用foo()后会不断把"baz"添加到已有的列表,而不是新建一个新列表呢?答案就是,函数参数的默认值仅在定义函数时执行一次。因此,仅在第一次定义foo()时,bar初始化为默认值(即空列表),此后,每次调用foo()函数时,参数bar都是第一次初始化时生成的列表。

常见的解决方案:

>>> def foo(bar=None):... if bar is None: # or if not bar:... bar = []... bar.append("baz")... return bar...>>> foo()["baz"]>>> foo()["baz"]>>>foo()["baz"]

常见错误2:错误地使用类变量

代码示例:

>>> class A(object):... x = 1...>>> class B(A):... pass...>>> class C(A):... pass...>>> print A.x, B.x, C.x1 1 1

运行结果没问题。

>>> B.x = 2>>> print A.x, B.x, C.x1 2 1

结果也正确。

>>> A.x = 3>>> print A.x, B.x, C.x3 2 3

什么鬼?我们只改变了A.x.,为什么C.x 也变了?

在Python中,类变量是以字典形式进行内部处理,遵循方法解析顺序(Method Resolution Order ,MRO)。因此,在上述代码中,因为在类C中没有找到属性x,它就会从父类中查找x的值(尽管Python支持多重继承,但上述代码只存在一个父类A)。换句话说,C没有独立于类A的属于自己的x。因此,C.x实际上指的是A.x。除非处理得当,否则就会导致Python出现错误。

如果想更深入了解Python的类特性,请戳:

https://toptal/python/python-class-attributes-an-overly-thorough-guide

常见错误3:错误指定异常代码块的参数

假设你有如下代码:

>>> try:... l = ["a", "b"]... int(l[2])... except ValueError, IndexError: # To catch both exceptions, right?... pass...Traceback (most recent call last):File "", line 3, in IndexError: list index out of range

这里的问题是except语句不接受以这种方式指定的异常列表。在Python2.x中,except Exception语句中变量e可用来把异常信息绑定到第二个可选参数上,以便进一步查看异常的情况。因此,在上述代码中,except语句并没有捕捉到IndexError异常;而是将出现的异常绑定到了参数IndexError中。

想在一个except语句同时捕捉到多个异常的正确方式是,将第一个参数指定为元组,并将要捕捉的异常类型都写入该元组中。为了方便起见,可以使用as关键字,Python 2 和Python 3都支持这种语法格式:

>>> try:... l = ["a", "b"]... int(l[2])... except (ValueError, IndexError) as e: ... pass...>>>

常见错误4:错误理解Python中变量的作用域

Python变量作用域遵循LEGB规则,LEGB是Local,Enclosing,Global,Builtin的缩写,分别代表本地作用域、封闭作用域、全局作用域和内置作用域,这个规则看起来一目了然。事实上,Python的这种工作方式较为独特,会导致一些编程错误,例如:

>>> x = 10>>> def foo():... x += 1... print x...>>> foo()Traceback (most recent call last):File "", line 1, in File "", line 2, in fooUnboundLocalError: local variable 'x' referenced before assignment

问题出在哪?

上面的错误是因为在作用域内对变量赋值时,Python自动将该变量视为该作用域的本地变量,并对外部定义的同名变量进行了屏蔽。因此,原本正确的代码,在某个函数内部添加了一个赋值语句后,却意外收到了UnboundLocalError的报错信息。

关于UnboundLocalError更多内容请戳:

https://docs.python.org/2/faq/programming.html#why-am-i-getting-an-unboundlocalerror-when-the-variable-has-a-value

在使用列表时,Python程序员更容易掉入此类陷阱,例如:

>>> lst = [1, 2, 3]>>> def foo1():... lst.append(5) # This works ok......>>> foo1()>>> lst[1, 2, 3, 5]>>> lst = [1, 2, 3]>>> def foo2():... lst += [5] # ... but this bombs!...>>> foo2()Traceback (most recent call last):File "", line 1, in File "", line 2, in fooUnboundLocalError: local variable 'lst' referenced before assignment

奇怪,为什么foo1正常运行,而foo2崩溃了呢?

原因和上一个案例中出现的问题相似,但这里的错误更加细微。函数foo1没有对变量lst进行赋值操作,而函数foo2有赋值操作。

首先, lst += [5]是lst = lst + [5]的缩写形式,在函数foo2中试图对变量lst进行赋值操作(Python将变量lst默认为本地作用域的变量)。但是,lst += [5]语句是对lst变量自身进行的赋值操作(此时变量lst的作用域是函数foo2),但是在函数foo2中还未声明该变量,所以就报错啦!

常见错误5:在遍历列表时修改列表

下面代码中的错误很明显:

>>> odd = lambda x : bool(x % 2)>>> numbers = [n for n in range(10)]>>> for i in range(len(numbers)):... if odd(numbers[i]):... del numbers[i] # BAD: Deleting item from a list while iterating over it...Traceback (most recent call last):File "", line 2, in IndexError: list index out of range

有经验的程序员都知道,在Python中遍历列表或数组时不应该删除该列表(数组)中的元素。虽然上面代码的错误很明显,但是在编写复杂代码时,资深程序员也难免会犯此类错误。

幸好Python集成了大量经典的编程范式,如果运用得当,可以大大简化代码并提高编程效率。简单的代码会降低出现上述bug的几率。列表解析式(list comprehensions)就是利器之一,它将完美避开上述bug,解决方案如下:

>>> odd = lambda x : bool(x % 2)>>> numbers = [n for n in range(10)]>>> numbers[:] = [n for n in numbers if not odd(n)] # ahh, the beauty of it all>>> numbers[0, 2, 4, 6, 8]

更多有关列表解析式的详细内容,请戳:https://docs.python.org/2/tutorial/datastructures.html#tut-listcomps

常见错误6:不理解Python闭包中的变量绑定

代码示例:

>>> def create_multipliers():... return [lambda x : i * x for i in range(5)]>>> for multiplier in create_multipliers():... print multiplier(2)...

你以为运行结果会是:

02468

但实际输出结果是:8

8888

惊不惊喜!

这种情况是由于Python延迟绑定(late binding)机制造成的,也就是说只有在内部函数被调用时才会搜索闭包中变量的值。所以在上述代码中,每次调用create_multipliers()函数中的return函数时,会在附近作用域中查询变量i的值。(此时,return中循环已结束,所以i值为4)。

常见解决方案:

>>> def create_multipliers():... return [lambda x, i=i : i * x for i in range(5)]...>>> for multiplier in create_multipliers():... print multiplier(2)...02468

没错!我们利用了匿名函数lambda的默认参数来生成结果序列。有人觉得这种用法很简洁,有人会说它很巧妙,还有人会觉得晦涩难懂。如果你是Python开发人员,那么深刻理解上述语法对你而言非常重要。

常见错误7:模块之间出现循环依赖

假设你有两个文件,分别是a.py和b.py,两者相互导入,如下所示:

a.py模块中的代码:

import bdef f():return b.xprint f()

b.py模块中的代码:

import ax = 1def g():print a.f()

首先,我们尝试导入a.py:

>>> import a1

运行结果正确!这似乎有点出人意料,因为我们在这里进行循环导入,应该会报错呀!

答案是,在Python中如果仅存在一个循环导入,程序不会报错。如果一个模块已经被导入,Python会自动识别而不会再次导入。但是如果每个模块试图访问其他模块不同位置的函数或变量时,那么Error又双叒叕出现了。

回到上面的示例中,当导入a.py模块时,程序可以正常导入b.py模块,因为此时b.py模块未访问a.py中定义任何的变量或函数。b.py模块仅引用了a.py模中的a.f()函数。调用的a.f()函数隶属于g()函数,而a.py或b.py模块中并没有调用g()函数。所以程序没有报错。

但是,如果我们在未导入a.py模块之前先导入b.py模块,结果会怎样?

>>> import bTraceback (most recent call last):File "", line 1, in File "b.py", line 1, in import a File "a.py", line 6, in print f() File "a.py", line 4, in f return b.xAttributeError: 'module' object has no attribute 'x'

报错了!问题在于,在导入b.py的过程中,它试图导入a.py模块,而a.py模块会调用f()函数,f()函数又试图访问b.x变量。但此时,还未对变量b.x进行定义,所以出现了AttributeError异常。

稍微修改下b.py,即在g()函数内部导入a.py就可以解决上述问题。

修改后的b.py:

x = 1def g():

import a # This will be evaluated only when g() is calledprint a.f()

现在我们再导入b.py模块,就不会报错啦!

>>> import b>>> b.g()1 # Printed a first time since module 'a' calls 'print f()' at the end1 # Printed a second time, this one is our call to 'g'

常见错误8:文件命名与Python标准库模块的名称冲突

Python的优势之一就是其集成了丰富的标准库。正因为如此,稍不留神就会在为自己的文件命名时与Python自带标准库模块重名。例如,如果你的代码中有一个名为email.py的模块,恰好就和Python标准库中email.py模块重名了。)

上述问题比较复杂。举个例子,在导入模块A的时候,假如该模块A试图导入Python标准库中的模块B,但你已经定义了一个同名模块B,模块A会错误导入你自定义的模块B,而不是Python标准库中的模块B。这种错误很糟糕,因为程序员很难察觉到是因为命名冲突而导致的。

因此,Python程序员要注意避免与Python标准库模块的命名冲突。毕竟,修改自己模块的名称比修改标准库的名称要容易的多!当然你也可以写一份Python改善建议书(Python Enhancement Proposal,PEP)提议修改标准库的名称。

常见错误9:不熟悉Python2和Python3之间的差异

先来看看foo.py文件中的代码:

import sysdef bar(i):if i == 1: raise KeyError(1) if i == 2: raise ValueError(2)def bad(): e = None try: bar(int(sys.argv[1])) except KeyError as e: print('key error') except ValueError as e: print('value error') print(e)bad()

在Python 2中,上述代码运行正常

$ python foo.py 1key error1$ python foo.py 2value error2

但是在Python 3中运行时:

$ python3 foo.py 1key errorTraceback (most recent call last):File "foo.py", line 19, in bad() File "foo.py", line 17, in bad print(e)UnboundLocalError: local variable 'e' referenced before assignment

什么情况?原来,在Python 3中,在except代码块作用域外无法访问异常对象。(原因是,Python 3会将内存堆栈中的循环引用进行保留,直到垃圾回收...

揭秘 Python 中的 enumerate() 函数 营销视频课程

img

祖寄文

关注

如何以去写以及为什么你应该使用Python中的内置枚举函数来编写更干净更加Pythonic的循环语句?

Python的enumerate函数是一个神话般的存在,以至于它很难用一句话去总结它的目的和用处。但是,它是一个非常有用的函数,许多初学者,甚至中级Pythonistas是并没有真正意识到。简单来说,enumerate是用来遍历一个可迭代容器中的元素,同时通过一个计数器变量记录当前元素所对应的索引值。

让我们来看一个示例:

正如你所看到的,这个循环遍历了names列表的所有元素,并通过增加从零开始的计数器变量来为每个元素生成索引。

[如果您想知道上面例子中使用的f'...'字符串语法,这是Python 3.6及更高版本中提供的一种新的字符串格式化技巧。]

用那么为什么用enumerate函数去保存运行中的索引很有用呢?range(len(...))方法来保存运行中每个元素的索引,同时再用for通过巧妙地使用enumerate函数,就像我在上面的"names"例子中写的那样,你可以使你的循环结构看起来更Pythonic和地道。你不再需要在Python代码中专门去生成元素索引,而是将所有这些工作都交给enumerate函数处理即可。这样,你的代码将更容易被阅读,而且减少写错代码的影响。(译者注:写的代码越多,出错几率越高,尽量将自己的代码看起来简洁,易读,Pythonic,才是我们的追求)

修改起始索引

另一个有用的特性是,enumerate函数允许我们为循环自定义起始索引值。enumerateOK,这段代码演示的就是如何将Python的函数默认0起始索引值修改为1(或者其他任何整形值,根据需求去设置不同值)enumerate你可能想知道enumerate函数背后是如何工作的。事实上他的部分魔法是通过Python迭代器来实现的。意思就是每个元素的索引是懒加载的(一个接一个,用的时候生成),这使得内存使用量很低并且保持这个结构运行很快。在上面这个代码片段中,正如你所见,我使用了和前面一样的示例代码。但是,调用enumerate函数并不会立即返回循环的结果,而只是在控制台中返回了一个enumerate对象。

正如你所看到的,这是一个"枚举对象"。它的确是一个迭代器。就像我说的,它会在循环请求时懒加载地输出每个元素。

为了验证,我们可以取出那些"懒加载"的元素,我计划在这个迭代器上调用Python的内置函数list

>>>list(enumerate(names))

[(0,'Bob'),(1,'Alice'),(2,'Guido')]

对于输入list中的每个enumerate迭代器元素,迭代器会返回一个形式为(index,element)的元组作为list的元素。在典型的for-in循环中,你可以利用Python的数据结构解包功能来充分利用这一点特性:

for index, element in enumerate(iterable):

# ...

总结:Python中的enumerate函数-关键点

enumerate是Python的一个内置函数。你应该充分利用它通过循环迭代自动生成的索引变量。

索引值默认从0开始,但也可以将其设置为任何整数。

enumerate函数是从2.3版本开始被添加到Python中的,详情见PEP279。

Python的enumerate函数可以帮助你编写出更加Pythonic和地道的循环结构,避免使用笨重且容易出错的手动生成索引。

为了充分利用enumerate的特性,一定要研究Python的迭代器和数据结构解包功能。

题图:pexels,CC0授权。

img

TOP