网站性能检测评分
注:本网站页面html检测工具扫描网站中存在的基本问题,仅供参考。
100数据分析
年薪50万的大数据分析师养成记 推广视频课程
以下是一位在数据分析领域打滚了N年后,写下的一些体会,一定能给新人一些借鉴的地方。(总结的不错,大家可以借鉴学习哦)
一、数据分析师有哪些要求?
1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。
2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。
3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的问题,只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。
4、汇报和图表展现能力。这是临门一脚,做得再好的分析模型,如果不能很好地展示给领导和客户,成效就大打折扣,也会影响到数据分析师的职业晋升。
二、请把数据分析作为一种能力来培养
从广义来说,现在大多数的工作都需要用到分析能力,特别是数据化运营理念深入的今天,像BAT这样的公司强调全员参与数据化运营,所以,把它作为一种能力培训,将会让你终生受益。
三、从数据分析的四个步骤来看清数据分析师需具备的能力和知识:
数据分析的四个步骤(这有别于数据挖掘流程:商业理解、数据理解、数据准备、模型搭建、模型评估、模型部署),是从更宏观地展示数据分析的过程:获取数据、处理数据、分析数据、呈现数据。
(一) 获取数据
获取数据的前提是对商业问题的理解,把商业问题转化成数据问题,要通过现象发现本质,确定从哪些纬度来分析问题,界定问题后,进行数据的采集。此环节,需要数据分析师具备结构化的思维和对商业问题的理解能力。
推荐书籍:《金字塔原理》、麦肯锡三部曲:《麦肯锡意识》、《麦肯锡工具》、《麦肯锡方法》
工具:思维导图、mindmanager软件
(二) 处理数据
一个数据分析项目,通常数据处理时间占70%以上,使用先进的工具有利于提升效率,所以尽量学习最新最有效的处理工具,以下介绍的是最传统的,但却很有效率的工具:
Excel:日常在做通报、报告和抽样分析中经常用到,其图表功能很强大,处理10万级别的数据很轻松。
UltraEdit:文本工具,比TXT工具好用,打开和运行速度都比较快。
ACCESS:桌面数据库,主要是用于日常的抽样分析(做全量统计分析,消耗资源和时间较多,通常分析师会随机抽取部分数据进行分析),使用SQL语言,处理100万级别的数据还是很快捷。
Orcle、SQL sever:处理千万级别的数据需要用到这两类数据库。
当然,在自己能力和时间允许的情况下,学习新流行的分布式数据库及提升自身的编程能力,对未来的职业发展也有很大帮助。
分析软件主要推荐:
SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。
SAS:老牌经典挖掘软件,需要编程。
R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。
随着文本挖掘技术进一步发展,对非结构化数据的分析需求也越来越大,需要进一步关注文本挖掘工具的使用。
(三) 分析数据
分析数据,需要用到各类的模型,包括关联规则、聚类、分类、预测模型等,其中一个最重要的思想是对比,任何的数据需要在参照系下进行对比,结论才有意义。
推荐的书籍:
1、《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,卢辉着,机械出版社。这本书是近年国内写得最好的,务必把它当作圣经一样来读。
2、《谁说菜鸟不会数据分析(入门篇)》和《谁说菜鸟不会数据分析(工具篇)》,张文霖等编着。属于入门级的书,适合初学者。
3、《统计学》第五版,贾俊平等编着,中国人民大学出版社。比较好的一本统计学的书。
4、《数据挖掘导论》完整版,[美]Pang-Ning Tan等着,范明等翻译,人民邮电出版社。
5、《数据挖掘概念与技术》,Jiawei Han等着,范明等翻译,机械工业出版社。这本书相对难一些。
6、《市场研究定量分析方法与应用》,简明等编着,中国人民大学出版社。
7、《问卷统计分析实务—SPSS操作与应用》,吴明隆着,重庆大学出版社。在市场调查领域比较出名的一本书,对问卷调查数据分析讲解比较详细。
(四) 呈现数据
该部分需要把数据结果进行有效的呈现和演讲汇报,需要用到金字塔原理、图表及PPT、word的呈现,培养良好的演讲能力。
推荐书籍:
1、《说服力让你的PPT会说话》,张志等编着,人民邮电出版社。
2、《别告诉我你懂ppt》加强版,李治着,北京大学出版社。
3、《用图表说话》,基恩。泽拉兹尼着,马晓路等翻译,清华大学出版社。
(五) 其他的知识结构
数据分析师除了具备数学知识外,还要具备市场研究、营销管理、心理学、行为学、产品运营、互联网、大数据等方面的知识,需要构建完整广泛的知识体系,才能支撑解决日常遇到的不同类型的商业问题。
推荐书籍:
1、《消费者行为学》第10版,希夫曼等人着,江林等翻译,中国人民大学出版社,现在应该更新到更高的版本。
2、《怪诞行为学》升级版,艾瑞里着,赵德亮等翻译,中信出版社
3、《营销管理》,科特勒等着,梅清豪翻译,格致出版社和上海人民出版社联合出版
4、《互联网思维—独孤九剑》,赵大伟主编,机械出版社
5、《大数据时代—生活、工作与思维的大变革》,舍恩伯格等着,周涛等翻译,浙江人民出版社
四、关于数据分析师的职业发展:
1、数据分析师通常分两类,分工不同,但各有优势。
一类是在专门的挖掘团队里面从事数据挖掘和分析工作的。如果你能在这类专业团队学习成长,那是幸运的,但进入这类团队的门槛较高,需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。该类分析师更偏向技术线条,未来的职业通道可能走专家的技术路线。
另一类是下沉到各业务团队或者运营部门的数据分析师,成为业务团队的一员。他们工作是支撑业务运营,包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。该类型分析师偏向产品和运营,可以转向做运营和产品。
2、数据分析师的理想行业在互联网,但条条大道通罗马,走合适你的路线。
从行业的角度来看:
1)互联网行业是数据分析应用最广的行业,其中的电商企业,更是目前最火的,而且企业也更重视数据分析的价值,是数据分析师理想的成长平台。
2)其次是咨询公司(比如专门的数据挖掘公司Teradata、尼尔森等市场研究公司),他们需要数据分析人才,而且相对来说,数据分析师在咨询公司成长的速度更快,专业也会更全面。
3)再次是金融行业,比如银行和证券等行业,该行业对数据分析的依赖需求,越来越大。
4)最后是电信行业(中国移动、联通和电信),它们拥有海量的数据,在严峻的竞争下,也越来越重视数据分析,但进入这些公司的门槛比较高。
五、什么人适合学习数据分析?
这个问题的答案跟“什么人适合学功夫”一样,毫无疑问,功夫是适合任何人学习的(排除心术不正的人),因为能够强身健体。而功夫的成效,要看习武者的修炼深浅。常常有人争论,是咏春拳厉害,还是散打厉害,其实是颠倒了因果,应该看哪个人练习得比较好,流派之间没有高低,只有人修炼的厚薄。
实际上,问题的潜台词是“什么人学习数据分析,会更容易取得成功(比如职业成功)”,这个要视乎你的兴趣、付出和机遇。但要做到出类拔萃,除了上面三点,还需要一点天赋,这里的机遇是指你遇到的职业发展平台、商业环境、导师和同事。
借用管理大师德鲁克的话“管理是可以习得的”,管理并非是天生的,而数据分析能力,也可以后天提升。或许做到优秀,只需要你更加的努力+兴趣,而这个努力的过程,也包括你寻找机遇的部分。
六、关于如何学习:
学习方法千万种,关键是找到适合自己的,最好能够结合你的工作遇到的问题来学习。
1、搜集书籍、案例库和视频,先弄懂理论,然后学会软件操作,自己制作属于自己的教程。
比如,你学习聚类分析模型。1)搜集相关的聚类分析模型的书籍、案例和教学视频,了解聚类分析的原理,主要有哪几种算法(划分、层次、密度、网格)、模型适用的范围和前提、如何评估模型的精确度等。
2)自己学会用软件来实现。
3)总结整理成一份PPT和制作操作视频,成为自己的学习教程,不断完善。
4)学习到一定程度后,可以在博客、微信等渠道分享,授人与渔,而自己也会有所收获。
2、关注名人、名博、网站,多渠道学习。
1)关注专业的数据分析、咨询公司网站和论坛,特别强调,统计软件公司的网站如SPSS的官网有很多案例库,值得关注。
SPSS的案例库,可在官网上搜索各类案例:http://ibm/developerwork … 8zhangzy/index.html
另外,你最好建一个自己的网址导航目录,提升你的学习效率
2)关注名人名博,最好能加他们的微博、微信和微信公众号,看牛人的博客和微信等内容,还是能得到很多引导,这个你懂的。
3)加入一些有共同爱好的QQ群,互相学习交流。通常群里有人会提出一些真实的运营问题,然后大家用不同的方法去解决,对思路很有启发。
4)碎片化学习,最大化你的时间价值。为了把零散的时间利用起来,通常我会把一些资料上载到网盘,在零碎的时间里通过手机进行视频、文档学习等。目前使用百度云盘和360网盘。百度云盘应用比较广,通常在网络上搜索“关键词+百度云”后,搜到结果可以直接保存在云盘上,搜索保存速度极大提升。360网盘则空间比较大,可以到达40T,同时有保险箱加密功能,安全性高一些。
手机上安装一些APP,随时随地学习。
七、最后的建议
请再次问问自己,是否真的喜欢数据分析,能否忍受处理数据时的寂寞?如果是,那就开始学习,给你几条建议。
1、把数据分析作为一种能力培养,让自己在现在的团队中展现出良好的数据分析能力,为你以后内部转岗做好准备。如果内部转岗不成,你可以考虑跳槽到我之前分析的行业中,但我强烈建议你还是需要把系统开发的编程能力学习好,并且对商业智能系统(BI和CRM)有一定了解,这也许是应聘数据分析的优势。如果没有数据分析经验去应聘,相对会难一些,用人单位会考你统计和数据挖掘模型方面的知识,以及工具使用情况。
2、在公司里找一些有共同爱好的同事一起学习数据分析,平时多请教数据分析做得好的同事,它山之石,可以攻玉。
3、扎实学好一、两门数据挖掘软件,基于你有编程的基础,建议你可以学SAS或者R,同时辅助学习SPSS Modeler。如果没编程基础或者希望短期能够取得成效,那也可以先学习SPSS。SAS+SPSS,基本能够满足很大部分企业的需求,三者都会,那更好。
4、要了解公司是如何运营,产品是如何开发的,如何做客户研究锁定客户需求,如何做产品营销,这些需要不断工作积累和广泛的阅读。
5、开始学习时,先读几本有趣的数据分析类的书,然后系统学习一下统计知识(建议教材用《统计学》第五版,贾俊平等编着),接着网上快速搜集软件操作视频和案例,然后逐个分析模型进行学习和总结归纳,学习最好能够结合实际工作中的问题进行。
6、学习到一定程度时,参加一些数据分析师的职业认证,进一步梳理知识结构,同时认识一些志同道合的朋友和老师,也是对你有很大帮助。
希望你能够成为你想成为的人!
End.
来源:36大数据
中国金融科技创新TOP100数据分析 企业视频课程
innov100 2018.01.26
关键词:金融科技、大数据、区块链、新科技
摘要:随着科技力量的凸显、金融业务与科技产业资源要素边界的融合,金融与科技互为驱动、相互促进,使得金融科技逐渐回归金融与科技本身。
金融科技创新Top100是Innov100产业数据库中按照金融科技产业创新指数自动计算和筛选出的100家企业。赛智产业研究院的数据分析师在产业数据库的基础上进行数据分析,形成《2017-2018年中国金融科技创新TOP100研究报告》。
(一)金融科技创新TOP100产业链分布分析
金融科技产业链不仅包括传统金融的互联网转型,还包括不断涌现的支付、信贷融资、普惠金融、消费金融、征信等金融服务新模式,以及金融资讯、综合性金融服务等。银行、保险、证券投资、基金理财等传统金融借助新科技手段逐渐向智能化、轻型化方向转型。第三方支付工具的出现革新了传统支付方式,逐步向高效便捷转化。互联网、大数据的技术加持,使P2P金融、小额借贷等信贷融资新模式成为投资创业的热点。金融服务实体经济的趋势下,普惠金融、消费金融遍地生根。基于大数据的个人与企业征信成为金融业重要趋势。精准营销下的定制化金融资讯成为金融服务的重要导流渠道。互联网金融平台利用人工智能、大数据、区块链等新技术,构建了消费生活方方面面的金融服务场景,促进金融普惠化、金融服务生活化,同时,便捷消费习惯的养成也为后续金融与生产生活无缝结合搭建了坚实的基础与广阔的存量空间。
图 1 金融科技创新TOP100产业链分布
(二)金融科技创新TOP100区域布局分析
2017年金融科技创新TOP100企业主要集聚在北京、上海、深圳、杭州一线及准一线较发达城市,北京以45家金融科技企业独占鳌头,上海紧随其后,企业数为24家,这与上海在全国金融行业地位稍有出入。深圳与杭州都以12家企业入选同居第三。南京有3家企业入选,天津、武汉、成都、香港各有一家企业入选。通过对数据的初步分析,目前金融科技产业已呈现区域集聚趋势,这些城市以其雄厚技术、人才、资金储备和宽松的行业创新环境,吸引众多企业集聚。
图 2 金融科技创新TOP100区域布局
其中,北京入选金融科技创新TOP100中的企业主营业务以金融大数据、P2P金融、第三方支付、互联网消费金融、智能投顾为主。金融大数据、P2P金融细分业态呈现集聚趋势,其他细分业态集聚趋势不明显。
图 3 北京市金融科技创新TOP100中企业细分领域
上海市入选金融科技创新TOP100中的企业,主要以P2P金融、第三方支付、金融大数据、个人征信、互联网消费金融、互联网金融平台、互联网保险为主,各类业态发展相对平衡。
图 4 上海市金融科技创新TOP100中企业细分领域
深圳市入选金融科技创新TOP100中的企业,主要以互联网银行、互联网保险、互联网理财、互联网消费金融为主,以企业征信、个人征信、互联网金融平台等细分业态为辅。
图 5 深圳市金融科技创新TOP100中企业细分领域
杭州市入选金融科技创新TOP100中的企业,主要以互联网理财、金融大数据为主,P2P金融、互联网保险、互联网消费金融、区块链金融、互联网金融平台、农业金融服务等细分业态均衡发展。
图 6 杭州市金融科技创新TOP100中企业细分领域
(三)金融科技创新TOP100成长周期分析
目前,金融行业代表性企业多为2014年前后创立。不同节点诞生不同的机会,从而催生出高成长型、高科技、高壁垒的独角兽企业
图 7 金融科技TOP100创立时间分布
从金融科技创新TOP100创立时间分析,2014年创立的新型公司进入榜单最多,多达25家,2015年达到17家。2014年前后,P2P、众筹等新金融服务成为投资风口,相关企业纷纷成立,加之人工智能、大数据、区块链等技术逐渐渗透金融行业,驱动了金融服务模式的不断创新。
(四)金融科技创新TOP100创投数据分析
根据产业创新创投数据平台Innov100发布的金融科技创新TOP100可以看出,获得融资的主要是P2P金融、金融大数据、互联网消费金融、第三方支付、互联网保险、互联网理财、智能投顾、农业金融服务、互联网银行、个人征信、企业征信、互联网证券、区块链金融、支付工具综合等25个产业细分领域,其中,入选TOP100的企业中P2P金融、金融大数据、互联网消费金融、互联网金融平台等四个细分领域获投最多。P2P金融、综合性金融服务、互联网保险、信用卡四个领域企业融资能力最高,最高达到了几十亿美元。
图 8 金融科技TOP100投资领域分析
2017年,金融科技创新TOP100的投资轮次集中在A轮和B轮等早期创业项目,其中A轮占22%,B轮占28%。
图 9 金融科技TOP100投资轮次分布
通过对金融科技企业阶段融资TOP10的数据分析,可以看到金融科技企业获得阶段融资的前十笔融资项目都集中在2015-2016年,在这一阶段获得大额融资的金融科技企业如蚂蚁金服、陆金所、京东金融、众安保险、趣店、51信用卡、借贷宝等,均获得了长足发展,占据了金融科技细分领域的第一阵地。中投、鼎晖投资、腾讯产业共赢基金、红杉资本、凤凰祥瑞、新湖中宝等创投机构表现活跃。
表 1 金融科技企业阶段融资TOP10
(五)金融科技TOP100代表企业
1.人人友信
人人友信是个人金融服务集团,专注于利用先进的互联网技术和传统金融的优势,为个人提供全方位的财富管理、信用 借贷、品质生活等服务,致力于创造普惠金融价值。集团业务始于2010年4月,目前涵盖人人贷、WE理财、黑卡等三大主要品牌。
人人贷上线于2010年10月,为有资金和消费需求的个人提供信用借款及其他消费金融服务,同时开发小额信贷技术服务,逐步建立并完善符合时代特征的个人金融风险定价体系。
WE理财上线于2015年10月,结合传统金融机构和互联网模式的优势,以人机结合的创新方式,为用户提供一站式个人财富管理及规划服务,实现从投资服务、产品交易到跟踪管理的闭环。
2. 数库
数库是一家为企业提供“知识”治理解决方案的金融科技公司,是国内专注服务B端金融机构的智能金融解决方案提供商。从创立至今,数库始终致力于更高效地从纷繁复杂的信息中提取知识,帮助企业提高决策效率。
数库以金融大数据引擎为基础,数据覆盖全球多个市场及有关企业,独有多层精细化产业链分层体系,建立以独有NLP为核心的AI技术平台,应用多种核心AI算法,向金融企业提供多种垂直场景的智能金融解决方案。
3. 天创信用
天创信用聚焦于消费金融、汽车金融和农业领域,通过大数据技术及风控能力连接金融端和产业端,帮助客户构建“数据+系统+模型”的风控核心能力。
在金融领域,天创推出了基于机器学习模型和海量数据打造的全流程智能信审服务,极大提升了金融机构的审批效率,在不良率和通过率控制上具备了较高的技术实力。同时,天创专为金融机构打造的风云诀智能决策分析平台,提升了企业精细化风险管理能力。在农业领域,天创将风控技术应用于农业场景,从养殖业到种植业,逐步扩张覆盖领域和服务人群,推动三农金融的健康快速发展。
4、金电联行
金电联行是一家融信息技术研发、金融与社会信用服务于一体的国家高新技术企业,是中国人民银行首批批 准备案的全国企业征信机构之一。金电联行致力于企业、个人、金融市场信息的采集挖掘及分析,开创了大数据在征信领域的创新应用,并在金融大数据、政务大数据、产业大数据等多个领域取得了多项成绩。 金电联行总部位于北京,目前在上海、天津、杭州、南京、贵阳、长春等地建有多个分支机构,另设四大科研基地,并与北大、复旦等多所高校进行科研合作,覆盖大数据、人工智能等科技领域的研究机构,跨界、 跨国的大数据标准建设合作。
5、冰鉴科技
冰鉴科技是一家高科技金融公司,致力于使用人工智能技术为金融机构提供独立第三方的大数据风控服务。 公司总部位于上海,在南京、深圳、北京、常州、成都、洛杉矶设有分支机构。冰鉴积极探索AI技术在大数据风控领域的应用,为客户提供基于模型的实时评分和一站式风控系统解决方案,致力于构建金融风控体系。 在为金融机构提升效率、创造收益的同时,也更好地满足了小微企业和长尾人群的信贷需求,让金融服务变 得更便利、普惠。目前,冰鉴和国内多个传统金融机构和互联网金融平台展开深度合作,在运用人工智能进行小微企业和个人征信方面拥有技术实力。
▎本文系Innov100原创文章,转载请标明出处。
年薪50万的大数据分析师养成记 互联网视频课程
以下是一位在数据分析领域打滚了N年后,写下的一些体会,一定能给新人一些借鉴的地方。(总结的不错,大家可以借鉴学习哦)
一、数据分析师有哪些要求?
1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。
2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。
3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的问题,只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。
4、汇报和图表展现能力。这是临门一脚,做得再好的分析模型,如果不能很好地展示给领导和客户,成效就大打折扣,也会影响到数据分析师的职业晋升。
二、请把数据分析作为一种能力来培养
从广义来说,现在大多数的工作都需要用到分析能力,特别是数据化运营理念深入的今天,像BAT这样的公司强调全员参与数据化运营,所以,把它作为一种能力培训,将会让你终生受益。
三、从数据分析的四个步骤来看清数据分析师需具备的能力和知识:
数据分析的四个步骤(这有别于数据挖掘流程:商业理解、数据理解、数据准备、模型搭建、模型评估、模型部署),是从更宏观地展示数据分析的过程:获取数据、处理数据、分析数据、呈现数据。
(一) 获取数据
获取数据的前提是对商业问题的理解,把商业问题转化成数据问题,要通过现象发现本质,确定从哪些纬度来分析问题,界定问题后,进行数据的采集。此环节,需要数据分析师具备结构化的思维和对商业问题的理解能力。
推荐书籍:《金字塔原理》、麦肯锡三部曲:《麦肯锡意识》、《麦肯锡工具》、《麦肯锡方法》
工具:思维导图、mindmanager软件
(二) 处理数据
一个数据分析项目,通常数据处理时间占70%以上,使用先进的工具有利于提升效率,所以尽量学习最新最有效的处理工具,以下介绍的是最传统的,但却很有效率的工具:
Excel:日常在做通报、报告和抽样分析中经常用到,其图表功能很强大,处理10万级别的数据很轻松。
UltraEdit:文本工具,比TXT工具好用,打开和运行速度都比较快。
ACCESS:桌面数据库,主要是用于日常的抽样分析(做全量统计分析,消耗资源和时间较多,通常分析师会随机抽取部分数据进行分析),使用SQL语言,处理100万级别的数据还是很快捷。
Orcle、SQL sever:处理千万级别的数据需要用到这两类数据库。
当然,在自己能力和时间允许的情况下,学习新流行的分布式数据库及提升自身的编程能力,对未来的职业发展也有很大帮助。
分析软件主要推荐:
SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。
SAS:老牌经典挖掘软件,需要编程。
R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。
随着文本挖掘技术进一步发展,对非结构化数据的分析需求也越来越大,需要进一步关注文本挖掘工具的使用。
(三) 分析数据
分析数据,需要用到各类的模型,包括关联规则、聚类、分类、预测模型等,其中一个最重要的思想是对比,任何的数据需要在参照系下进行对比,结论才有意义。
推荐的书籍:
1、《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,卢辉着,机械出版社。这本书是近年国内写得最好的,务必把它当作圣经一样来读。
2、《谁说菜鸟不会数据分析(入门篇)》和《谁说菜鸟不会数据分析(工具篇)》,张文霖等编着。属于入门级的书,适合初学者。
3、《统计学》第五版,贾俊平等编着,中国人民大学出版社。比较好的一本统计学的书。
4、《数据挖掘导论》完整版,[美]Pang-Ning Tan等着,范明等翻译,人民邮电出版社。
5、《数据挖掘概念与技术》,Jiawei Han等着,范明等翻译,机械工业出版社。这本书相对难一些。
6、《市场研究定量分析方法与应用》,简明等编着,中国人民大学出版社。
7、《问卷统计分析实务—SPSS操作与应用》,吴明隆着,重庆大学出版社。在市场调查领域比较出名的一本书,对问卷调查数据分析讲解比较详细。
(四) 呈现数据
该部分需要把数据结果进行有效的呈现和演讲汇报,需要用到金字塔原理、图表及PPT、word的呈现,培养良好的演讲能力。
推荐书籍:
1、《说服力让你的PPT会说话》,张志等编着,人民邮电出版社。
2、《别告诉我你懂ppt》加强版,李治着,北京大学出版社。
3、《用图表说话》,基恩。泽拉兹尼着,马晓路等翻译,清华大学出版社。
(五) 其他的知识结构
数据分析师除了具备数学知识外,还要具备市场研究、营销管理、心理学、行为学、产品运营、互联网、大数据等方面的知识,需要构建完整广泛的知识体系,才能支撑解决日常遇到的不同类型的商业问题。
推荐书籍:
1、《消费者行为学》第10版,希夫曼等人着,江林等翻译,中国人民大学出版社,现在应该更新到更高的版本。
2、《怪诞行为学》升级版,艾瑞里着,赵德亮等翻译,中信出版社
3、《营销管理》,科特勒等着,梅清豪翻译,格致出版社和上海人民出版社联合出版
4、《互联网思维—独孤九剑》,赵大伟主编,机械出版社
5、《大数据时代—生活、工作与思维的大变革》,舍恩伯格等着,周涛等翻译,浙江人民出版社
四、关于数据分析师的职业发展:
1、数据分析师通常分两类,分工不同,但各有优势。
一类是在专门的挖掘团队里面从事数据挖掘和分析工作的。如果你能在这类专业团队学习成长,那是幸运的,但进入这类团队的门槛较高,需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。该类分析师更偏向技术线条,未来的职业通道可能走专家的技术路线。
另一类是下沉到各业务团队或者运营部门的数据分析师,成为业务团队的一员。他们工作是支撑业务运营,包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。该类型分析师偏向产品和运营,可以转向做运营和产品。
2、数据分析师的理想行业在互联网,但条条大道通罗马,走合适你的路线。
从行业的角度来看:
1)互联网行业是数据分析应用最广的行业,其中的电商企业,更是目前最火的,而且企业也更重视数据分析的价值,是数据分析师理想的成长平台。
2)其次是咨询公司(比如专门的数据挖掘公司Teradata、尼尔森等市场研究公司),他们需要数据分析人才,而且相对来说,数据分析师在咨询公司成长的速度更快,专业也会更全面。
3)再次是金融行业,比如银行和证券等行业,该行业对数据分析的依赖需求,越来越大。
4)最后是电信行业(中国移动、联通和电信),它们拥有海量的数据,在严峻的竞争下,也越来越重视数据分析,但进入这些公司的门槛比较高。
五、什么人适合学习数据分析?
这个问题的答案跟“什么人适合学功夫”一样,毫无疑问,功夫是适合任何人学习的(排除心术不正的人),因为能够强身健体。而功夫的成效,要看习武者的修炼深浅。常常有人争论,是咏春拳厉害,还是散打厉害,其实是颠倒了因果,应该看哪个人练习得比较好,流派之间没有高低,只有人修炼的厚薄。
实际上,问题的潜台词是“什么人学习数据分析,会更容易取得成功(比如职业成功)”,这个要视乎你的兴趣、付出和机遇。但要做到出类拔萃,除了上面三点,还需要一点天赋,这里的机遇是指你遇到的职业发展平台、商业环境、导师和同事。
借用管理大师德鲁克的话“管理是可以习得的”,管理并非是天生的,而数据分析能力,也可以后天提升。或许做到优秀,只需要你更加的努力+兴趣,而这个努力的过程,也包括你寻找机遇的部分。
六、关于如何学习:
学习方法千万种,关键是找到适合自己的,最好能够结合你的工作遇到的问题来学习。
1、搜集书籍、案例库和视频,先弄懂理论,然后学会软件操作,自己制作属于自己的教程。
比如,你学习聚类分析模型。1)搜集相关的聚类分析模型的书籍、案例和教学视频,了解聚类分析的原理,主要有哪几种算法(划分、层次、密度、网格)、模型适用的范围和前提、如何评估模型的精确度等。
2)自己学会用软件来实现。
3)总结整理成一份PPT和制作操作视频,成为自己的学习教程,不断完善。
4)学习到一定程度后,可以在博客、微信等渠道分享,授人与渔,而自己也会有所收获。
2、关注名人、名博、网站,多渠道学习。
1)关注专业的数据分析、咨询公司网站和论坛,特别强调,统计软件公司的网站如SPSS的官网有很多案例库,值得关注。
SPSS的案例库,可在官网上搜索各类案例:http://ibm/developerwork … 8zhangzy/index.html
另外,你最好建一个自己的网址导航目录,提升你的学习效率
2)关注名人名博,最好能加他们的微博、微信和微信公众号,看牛人的博客和微信等内容,还是能得到很多引导,这个你懂的。
3)加入一些有共同爱好的QQ群,互相学习交流。通常群里有人会提出一些真实的运营问题,然后大家用不同的方法去解决,对思路很有启发。
4)碎片化学习,最大化你的时间价值。为了把零散的时间利用起来,通常我会把一些资料上载到网盘,在零碎的时间里通过手机进行视频、文档学习等。目前使用百度云盘和360网盘。百度云盘应用比较广,通常在网络上搜索“关键词+百度云”后,搜到结果可以直接保存在云盘上,搜索保存速度极大提升。360网盘则空间比较大,可以到达40T,同时有保险箱加密功能,安全性高一些。
手机上安装一些APP,随时随地学习。
七、最后的建议
请再次问问自己,是否真的喜欢数据分析,能否忍受处理数据时的寂寞?如果是,那就开始学习,给你几条建议。
1、把数据分析作为一种能力培养,让自己在现在的团队中展现出良好的数据分析能力,为你以后内部转岗做好准备。如果内部转岗不成,你可以考虑跳槽到我之前分析的行业中,但我强烈建议你还是需要把系统开发的编程能力学习好,并且对商业智能系统(BI和CRM)有一定了解,这也许是应聘数据分析的优势。如果没有数据分析经验去应聘,相对会难一些,用人单位会考你统计和数据挖掘模型方面的知识,以及工具使用情况。
2、在公司里找一些有共同爱好的同事一起学习数据分析,平时多请教数据分析做得好的同事,它山之石,可以攻玉。
3、扎实学好一、两门数据挖掘软件,基于你有编程的基础,建议你可以学SAS或者R,同时辅助学习SPSS Modeler。如果没编程基础或者希望短期能够取得成效,那也可以先学习SPSS。SAS+SPSS,基本能够满足很大部分企业的需求,三者都会,那更好。
4、要了解公司是如何运营,产品是如何开发的,如何做客户研究锁定客户需求,如何做产品营销,这些需要不断工作积累和广泛的阅读。
5、开始学习时,先读几本有趣的数据分析类的书,然后系统学习一下统计知识(建议教材用《统计学》第五版,贾俊平等编着),接着网上快速搜集软件操作视频和案例,然后逐个分析模型进行学习和总结归纳,学习最好能够结合实际工作中的问题进行。
6、学习到一定程度时,参加一些数据分析师的职业认证,进一步梳理知识结构,同时认识一些志同道合的朋友和老师,也是对你有很大帮助。
希望你能够成为你想成为的人!
End.
来源:36大数据