pyecharts介绍
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒
为避免绘制缺漏,建议全部安装
为了避免下载缓慢,作者全部使用镜像源下载过了
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkgpip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-provinces-pypkgpip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-cities-pypkgpip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-counties-pypkgpip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-misc-pypkgpip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-united-kingdom-pypkg基础案例
from pyecharts.charts import Barbar = Bar()bar.add_xaxis(['小嘉','小琪','大嘉琪','小嘉琪'])bar.add_yaxis('得票数',[60,60,70,100])#render会生成本地HTML文件,默认在当前目录生成render.html# bar.render()#可以传入路径参数,如 bar.render("mycharts.html")#可以将图形在jupyter中输出,如 bar.render_notebook()bar.render_notebook()from pyecharts.charts import Barfrom pyecharts import options as opts# 示例数据cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']data1 = [123, 153, 89, 107, 98, 23]data2 = [56, 77, 93, 68, 45, 67]# 1.x版本支持链式调用bar = (Bar() .add_xaxis(cate) .add_yaxis('渠道', data1) .add_yaxis('门店', data2) .set_global_opts(title_opts=opts.TitleOpts(title="示例", subtitle="副标")) )bar.render_notebook()from pyecharts.charts import Piefrom pyecharts import options as opts# 示例数据cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']data = [153, 124, 107, 99, 89, 46]pie = (Pie() .add('', [list(z) for z in zip(cate, data)], radius=["30%", "75%"], rosetype="radius") .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")) )pie.render_notebook()from pyecharts.charts import Linefrom pyecharts import options as opts# 示例数据cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']data1 = [123, 153, 89, 107, 98, 23]data2 = [56, 77, 93, 68, 45, 67]"""折线图示例:1. is_smooth 折线 OR 平滑2. markline_opts 标记线 OR 标记点"""line = (Line() .add_xaxis(cate) .add_yaxis('电商渠道', data1, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")])) .add_yaxis('门店', data2, is_smooth=True, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", coord=[cate[2], data2[2]], value=data2[2])])) .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题")) )line.render_notebook()from pyecharts import options as optsfrom pyecharts.charts import Geofrom pyecharts.globals import ChartTypeimport randomprovince = ['福州市', '莆田市', '泉州市', '厦门市', '漳州市', '龙岩市', '三明市', '南平']data = [(i, random.randint(200, 550)) for i in province]geo = (Geo() .add_schema(maptype="福建") .add("门店数", data, type_=ChartType.HEATMAP) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( visualmap_opts=opts.VisualMapOpts(), legend_opts=opts.LegendOpts(is_show=False), title_opts=opts.TitleOpts(title="福建热力地图")) )geo.render_notebook()啊哈这个还访问不了哈
ImportError: Missing optional dependency ‘xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.
20200822pyecharts+pandas 初步学习
作者今天学习做数据分析,有错误请指出
下面贴出源代码
转换为json格式输出的文件
作者这边还有国外的,不过没打算分享出来,大家就看看,总的来说我们国内情况还是非常良好的
到此这篇关于python绘图pyecharts+pandas的使用详解的文章就介绍到这了,更多相关pyecharts pandas使用内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!