1. 基本环境
安装 anaconda 环境, 由于国内登陆不了他的官网 https://puter 的数据集, 我们需要根据这个数据集进行分析并构建一颗决策树
代码实现:
核心就是调用 tree 的 DecisionTreeClassifier 方法对数据进行 训练得到一颗决策树
# -*- coding: utf-8 -*-"""Created on Sun Dec 25 11:25:40 2016@author: Administrator"""from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn import treefrom sklearn import preprocessingfrom sklearn.externals.six import StringIOimport pydotplusfrom IPython.display import Image# Read in the csv file and put features into list of dict and list of class labelallElectornicsData = open('AllElectronics.csv', 'r')reader = csv.reader(allElectornicsData)# headers = reader.next() python2.7 supported 本质获取csv 文件的第一行数据#headers = reader.__next__() python 3.5.2 headers = next(reader)print(headers)featureList = []labelList = []for row in reader: labelList.append(row[len(row) - 1]) rowDict = {} for i in range(1, len(row) - 1): rowDict[headers[i]] = row[i] featureList.append(rowDict)print(featureList)print(labelList)# Vetorize featuresvec = DictVectorizer()dummyX = vec.fit_transform(featureList).toarray()print("dummyX: " + str(dummyX))print(vec.get_feature_names())print("labelList: " + str(labelList))# vectorize class labelslb = preprocessing.LabelBinarizer()dummyY = lb.fit_transform(labelList)print("dummyY: ", str(dummyY))# Using decision tree for classification ===========【此处调用为算法核心】============#clf = tree.DecisionTreeClassifier(criterion='entropy')clf = tree.DecisionTreeClassifier(criterion='gini')clf = clf.fit(dummyX, dummyY)print("clf: ", str(clf))# Visualize model# dot -Tpdf iris.dot -o ouput.pdfwith open("allElectronicInformationGainOri.dot", 'w') as f: f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f)# predictoneRowX = dummyX[0, :]print("oneRowX: " + str(oneRowX))newRowX = oneRowXnewRowX[0] = 1newRowX[2] = 0print("newRowX: " + str(newRowX))predictedY = clf.predict(newRowX)print("predictedY: " + str(predictedY))输出结果:
ID3 算法
CART 算法
4. 决策树的优缺点
决策树的优势
决策树的劣势
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。