如下所示:
import tensorflow as tfsess = tf.Session(config=tf.ConfigProto(log_device_placement=True))查看日志信息若包含gpu信息,就是使用了gpu。
其他方法:跑计算量大的代码,通过 nvidia-smi 命令查看gpu的内存使用量。
以上这篇检测tensorflow是否使用gpu进行计算的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
如下所示:
import tensorflow as tfsess = tf.Session(config=tf.ConfigProto(log_device_placement=True))查看日志信息若包含gpu信息,就是使用了gpu。
其他方法:跑计算量大的代码,通过 nvidia-smi 命令查看gpu的内存使用量。
以上这篇检测tensorflow是否使用gpu进行计算的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。 如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Copyright © 1999-2025 中企动力科技股份有限公司(300.cn)All Rights Reserved
京公网安备11030102010293号 京ICP证010249-2
代理域名注册服务机构: 中网瑞吉思(天津)科技有限公司 北京新网数码信息技术有限公司