任务描述
对一个方阵矩阵,实现平行于主对角线方向的对角线元素遍历。
从矩阵索引入手:
[[ 1 2 3 4 5] [ 6 7 8 9 10] [11 12 13 14 15] [16 17 18 19 20] [21 22 23 24 25]]上三角的索引遍历:
0 01 12 23 34 40 11 22 33 40 21 32 40 31 40 4下三角的索引遍历:
1 02 13 24 32 03 14 23 04 14 0代码
import numpy as npA = np.arange(25)+1A = np.mat(A.reshape([5, 5]))print(A)"""[[ 1 2 3 4 5] [ 6 7 8 9 10] [11 12 13 14 15] [16 17 18 19 20] [21 22 23 24 25]]"""Num_element = A.shape[0]c = int((Num_element-1)/2)# print(c)R = np.zeros_like(A)# print(R)for j in range(Num_element): print() i = 0 # print(i, j) while np.max([i, j])<Num_element: print(i, j) if np.abs(i-j)%2==0: R[i, j] = A[c-int((j-i)/2), c+int((j-i)/2)] else: R[i, j] = (A[c-int((j-i-1)/2), c+int((j-i+1)/2)]+A[c-int((j-i+1)/2), c+int((j-i-1)/2)])/2 i=i+1 j=j+1# print(R)for k in range(1, Num_element): print() i = 0 # print(i, j) while np.max([k, i])<Num_element: print(k, i) if np.abs(k-i)%2==0: R[k, i] = A[c-int((i-k)/2), c+int((i-k)/2)] else: R[k, i] = (A[c-int((i-k-1)/2), c+int((i-k+1)/2)]+A[c-int((i-k+1)/2), c+int((i-k-1)/2)])/2 k=k+1 i=i+1print(R)上述代码中对于每条对角线的所有元素执行相同的赋值操作。
考虑将其中重复的部分封装成函数:
def diag_opreation(k, i, Num_element, R, A): c = int((Num_element-1)/2) while np.max([k, i])<Num_element: print(k, i) if np.abs(k-i)%2==0: R[k, i] = A[c-int((i-k)/2), c+int((i-k)/2)] else: R[k, i] = (A[c-int((i-k-1)/2), c+int((i-k+1)/2)]+A[c-int((i-k+1)/2), c+int((i-k-1)/2)])/2 k=k+1 i=i+1 return R则代码变为:
for j in range(Num_element): print() i = 0 # print(i, j) R = diag_opreation(i, j, Num_element, R, A)# print(R)for k in range(1, Num_element): print() i = 0 # print(i, j) R = diag_opreation(k, i, Num_element, R, A)print(R)输出结果为:
[[13 11 9 7 5] [15 13 11 9 7] [17 15 13 11 9] [19 17 15 13 11] [21 19 17 15 13]]以上这篇python 实现方阵的对角线遍历示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。