网站首页 网站建设 IT知识 IT知识教程 pytorch 指定gpu训练与多gpu并行训练示例

pytorch 指定gpu训练与多gpu并行训练示例

2021-05-22 21:29:17

一. 指定一个gpu训练的两种方法:

1.代码中指定

import torchtorch.cuda.set_device(id)

2.终端中指定

CUDA_VISIBLE_DEVICES=1 python 你的程序

其中id就是你的gpu编号

二. 多gpu并行训练:

torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)

该函数实现了在module级别上的数据并行使用,注意batch size要大于GPU的数量。

参数 :

module:需要多GPU训练的网络模型

device_ids: GPU的编号(默认全部GPU,或[0,1] ,[0,1,2])

output_device:(默认是device_ids[0])

dim:tensors被分散的维度,默认是0

在保存模型时要注意要加上"module",例如:

network.module.state_dict()

以上这篇pytorch 指定gpu训练与多gpu并行训练示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。 如涉及版权问题,请提交至online#300.cn邮箱联系删除。

以上产品还未完全满足我的所有需求,在下方提交我的专属需求
我的专属需求:
*手机号:
*验证码:
img
咨询报价
现在咨询
img

在线咨询

建站在线咨询

img

微信咨询

扫一扫添加
动力姐姐微信

img
img

TOP