使用 scipy.signal 的 argrelextrema 函数(API),简单方便
import numpy as np import pylab as plimport matplotlib.pyplot as pltimport scipy.signal as signalx=np.array([ 0, 6, 25, 20, 15, 8, 15, 6, 0, 6, 0, -5, -15, -3, 4, 10, 8, 13, 8, 10, 3, 1, 20, 7, 3, 0 ])plt.figure(figsize=(16,4))plt.plot(np.arange(len(x)),x)print x[signal.argrelextrema(x, np.greater)]print signal.argrelextrema(x, np.greater)plt.plot(signal.argrelextrema(x,np.greater)[0],x[signal.argrelextrema(x, np.greater)],'o')plt.plot(signal.argrelextrema(-x,np.greater)[0],x[signal.argrelextrema(-x, np.greater)],'+')# plt.plot(peakutils.index(-x),x[peakutils.index(-x)],'*')plt.show()[25 15 6 10 13 10 20](array([ 2, 6, 9, 15, 17, 19, 22]),)但是存在一个问题,在极值有左右相同点的时候无法识别,但是个人认为在实际的使用过程中极少会出现这种情况,所以可以忽略。
x=np.array([ 0, 15, 15, 15, 15, 8, 15, 6, 0, 6, 0, -5, -15, -3, 4, 10, 8, 13, 8, 10, 3, 1, 20, 7, 3, 0 ])plt.figure(figsize=(16,4))plt.plot(np.arange(len(x)),x)print x[signal.argrelextrema(x, np.greater)]print signal.argrelextrema(x, np.greater)plt.plot(signal.argrelextrema(x,np.greater)[0],x[signal.argrelextrema(x, np.greater)],'o')plt.plot(signal.argrelextrema(x,np.less)[0],x[signal.argrelextrema(x, np.less)],'+')plt.show()[15 6 10 13 10 20](array([ 6, 9, 15, 17, 19, 22]),)以上这篇python 寻找离散序列极值点的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。