网站首页 网站建设 IT知识 IT知识教程 pytorch 更改预训练模型网络结构的方法

pytorch 更改预训练模型网络结构的方法

2021-05-22 21:23:11

一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):

resnet_layer = nn.Sequential(*list(model.children())[:-2])

那么,接下来就可以构建我们的网络了:

class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉model的后两层 self.resnet_layer = nn.Sequential(*list(model.children())[:-2]) self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3) self.pool_layer = nn.MaxPool2d(32) self.Linear_layer = nn.Linear(2048, 8) def forward(self, x): x = self.resnet_layer(x) x = self.transion_layer(x) x = self.pool_layer(x) x = x.view(x.size(0), -1) x = self.Linear_layer(x) return x

最后,构建一个对象,并加载resnet预训练的参数就可以啦~

resnet = models.resnet50(pretrained=True)model = Net(resnet)

以上这篇pytorch 更改预训练模型网络结构的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。 如涉及版权问题,请提交至online#300.cn邮箱联系删除。

以上产品还未完全满足我的所有需求,在下方提交我的专属需求
我的专属需求:
*手机号:
*验证码:
img
咨询报价
现在咨询
img

在线咨询

建站在线咨询

img

微信咨询

扫一扫添加
动力姐姐微信

img
img

TOP