自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言工具箱(NLTK,NaturalLanguageToolkit)是一个基于Python语言的类库,它也是当前最为流行的自然语言编程与开发工具。在进行自然语言处理研究和应用时,恰当利用NLTK中提供的函数可以大幅度地提高效率。本文就将通过一些实例来向读者介绍NLTK的使用。
NLTK
NaturalLanguageToolkit,自然语言处理工具包,在NLP领域中,最常使用的一个Python库。
NLTK是一个开源的项目,包含:Python模块,数据集和教程,用于NLP的研究和开发 。
NLTK由Steven Bird和Edward Loper在宾夕法尼亚大学计算机和信息科学系开发。
NLTK包括图形演示和示例数据。其提供的教程解释了工具包支持的语言处理任务背后的基本概念。
开发环境:我所使用的Python版本是最新的3.5.1,NLTK版本是3.2。Python的安装不在本文的讨论范围内,我们略去不表。你可以从NLTK的官网上http://pile_regexp_to_noncapturing()在V3.1版本的NLTK中已经被抛弃(尽管在更早的版本中它仍然可以运行),为此我们把之前定义的pattern稍作修改
pattern = r"""(?x) # set flag to allow verbose regexps (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A. |\d+(?:\.\d+)?%? # numbers, incl. currency and percentages |\w+(?:[-']\w+)* # words w/ optional internal hyphens/apostrophe |\.\.\. # ellipsis |(?:[.,;"'?():-_`]) # special characters with meanings """再次执行前面的语句,便会得到
>>> nltk.regexp_tokenize(text, pattern) ['That', 'U.S.A.', 'poster-print', 'costs', '12.40', '...']以上便是我们对NLTK这个自然语言处理工具包的初步探索,日后主页君将结合机器学习中的方法再来探讨一些更为深入的应用。最后,我想说《Python 自然语言处理》仍然是当前非常值得推荐的一本讲述利用NLTK和Python进行自然语言处理技术的非常值得推荐的书籍。
总结
以上就是本文关于Python编程使用NLTK进行自然语言处理详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
python中requests库session对象的妙用详解
13个最常用的Python深度学习库介绍
python爬虫系列Selenium定向爬取虎扑篮球图片详解
如有不足之处,欢迎留言指出。