装饰器这东西我看了一会儿才明白,在函数外面套了一层函数,感觉和java里的aop功能很像;写了2个装饰器日志的例子,
第一个是不带参数的装饰器用法示例,功能相当于给函数包了层异常处理,第二个是带参数的装饰器用法示例,将日志输出到文件。
```#coding=utf8import tracebackimport loggingfrom logging.handlers import TimedRotatingFileHandlerdef logger(func): def inner(*args, **kwargs): #1 try: #print "Arguments were: %s, %s" % (args, kwargs) func(*args, **kwargs) #2 except: #print 'error',traceback.format_exc() print 'error' return innerdef loggerInFile(filename):#带参数的装饰器需要2层装饰器实现,第一层传参数,第二层传函数,每层函数在上一层返回 def decorator(func): def inner(*args, **kwargs): #1 logFilePath = filename # 日志按日期滚动,保留5天 logger = logging.getLogger() logger.setLevel(logging.INFO) handler = TimedRotatingFileHandler(logFilePath, when="d", interval=1, backupCount=5) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) try: #print "Arguments were: %s, %s" % (args, kwargs) result = func(*args, **kwargs) #2 logger.info(result) except: logger.error(traceback.format_exc()) return inner return decorator@loggerdef test(): print 2/0test()@loggerInFile('newloglog')def test2(n): print 100/ntest2(10)test2(0)print 'end'```以上这篇python使用装饰器作日志处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。